ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzo2 Unicode version

Theorem elfzo2 9958
Description: Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
elfzo2  |-  ( K  e.  ( M..^ N
)  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  K  <  N ) )

Proof of Theorem elfzo2
StepHypRef Expression
1 an4 576 . . 3  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <  N ) )  <->  ( (
( K  e.  ZZ  /\  M  e.  ZZ )  /\  M  <_  K
)  /\  ( N  e.  ZZ  /\  K  < 
N ) ) )
2 df-3an 965 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  <->  ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  N  e.  ZZ ) )
32anbi1i 454 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <  N ) )  <->  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <  N
) ) )
4 eluz2 9356 . . . . 5  |-  ( K  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K ) )
5 3ancoma 970 . . . . 5  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  <->  ( K  e.  ZZ  /\  M  e.  ZZ  /\  M  <_  K ) )
6 df-3an 965 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  M  <_  K )  <->  ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  M  <_  K ) )
74, 5, 63bitri 205 . . . 4  |-  ( K  e.  ( ZZ>= `  M
)  <->  ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  M  <_  K ) )
87anbi1i 454 . . 3  |-  ( ( K  e.  ( ZZ>= `  M )  /\  ( N  e.  ZZ  /\  K  <  N ) )  <->  ( (
( K  e.  ZZ  /\  M  e.  ZZ )  /\  M  <_  K
)  /\  ( N  e.  ZZ  /\  K  < 
N ) ) )
91, 3, 83bitr4i 211 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <  N ) )  <->  ( K  e.  ( ZZ>= `  M )  /\  ( N  e.  ZZ  /\  K  <  N ) ) )
10 elfzoelz 9955 . . . 4  |-  ( K  e.  ( M..^ N
)  ->  K  e.  ZZ )
11 elfzoel1 9953 . . . 4  |-  ( K  e.  ( M..^ N
)  ->  M  e.  ZZ )
12 elfzoel2 9954 . . . 4  |-  ( K  e.  ( M..^ N
)  ->  N  e.  ZZ )
1310, 11, 123jca 1162 . . 3  |-  ( K  e.  ( M..^ N
)  ->  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )
14 elfzo 9957 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M..^ N )  <->  ( M  <_  K  /\  K  < 
N ) ) )
1513, 14biadan2 452 . 2  |-  ( K  e.  ( M..^ N
)  <->  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <  N ) ) )
16 3anass 967 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  K  < 
N )  <->  ( K  e.  ( ZZ>= `  M )  /\  ( N  e.  ZZ  /\  K  <  N ) ) )
179, 15, 163bitr4i 211 1  |-  ( K  e.  ( M..^ N
)  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  K  <  N ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 963    e. wcel 1481   class class class wbr 3937   ` cfv 5131  (class class class)co 5782    < clt 7824    <_ cle 7825   ZZcz 9078   ZZ>=cuz 9350  ..^cfzo 9950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-fzo 9951
This theorem is referenced by:  elfzouz  9959  fzolb  9961  elfzo3  9971  fzouzsplit  9987  elfzo0  9990  fzo1fzo0n0  9991  elfzo1  9998  eluzgtdifelfzo  10005  ssfzo12bi  10033  elfzonelfzo  10038  elfzomelpfzo  10039  iseqf1olemkle  10288  iseqf1olemklt  10289
  Copyright terms: Public domain W3C validator