Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzmlbp | Unicode version |
Description: Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) |
Ref | Expression |
---|---|
elfzmlbp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2 9959 | . . . 4 | |
2 | znn0sub 9264 | . . . . . . . . . . . . . 14 | |
3 | 2 | adantr 274 | . . . . . . . . . . . . 13 |
4 | 3 | biimpcd 158 | . . . . . . . . . . . 12 |
5 | 4 | adantr 274 | . . . . . . . . . . 11 |
6 | 5 | impcom 124 | . . . . . . . . . 10 |
7 | zre 9203 | . . . . . . . . . . . . . . 15 | |
8 | 7 | adantr 274 | . . . . . . . . . . . . . 14 |
9 | 8 | adantr 274 | . . . . . . . . . . . . 13 |
10 | zre 9203 | . . . . . . . . . . . . . . 15 | |
11 | 10 | adantl 275 | . . . . . . . . . . . . . 14 |
12 | 11 | adantr 274 | . . . . . . . . . . . . 13 |
13 | zaddcl 9239 | . . . . . . . . . . . . . . 15 | |
14 | 13 | adantlr 474 | . . . . . . . . . . . . . 14 |
15 | 14 | zred 9321 | . . . . . . . . . . . . 13 |
16 | letr 7989 | . . . . . . . . . . . . 13 | |
17 | 9, 12, 15, 16 | syl3anc 1233 | . . . . . . . . . . . 12 |
18 | zre 9203 | . . . . . . . . . . . . . 14 | |
19 | addge01 8378 | . . . . . . . . . . . . . 14 | |
20 | 8, 18, 19 | syl2an 287 | . . . . . . . . . . . . 13 |
21 | elnn0z 9212 | . . . . . . . . . . . . . . 15 | |
22 | 21 | simplbi2 383 | . . . . . . . . . . . . . 14 |
23 | 22 | adantl 275 | . . . . . . . . . . . . 13 |
24 | 20, 23 | sylbird 169 | . . . . . . . . . . . 12 |
25 | 17, 24 | syld 45 | . . . . . . . . . . 11 |
26 | 25 | imp 123 | . . . . . . . . . 10 |
27 | df-3an 975 | . . . . . . . . . . . . . . . 16 | |
28 | 3ancoma 980 | . . . . . . . . . . . . . . . 16 | |
29 | 27, 28 | bitr3i 185 | . . . . . . . . . . . . . . 15 |
30 | 10, 7, 18 | 3anim123i 1179 | . . . . . . . . . . . . . . 15 |
31 | 29, 30 | sylbi 120 | . . . . . . . . . . . . . 14 |
32 | lesubadd2 8341 | . . . . . . . . . . . . . 14 | |
33 | 31, 32 | syl 14 | . . . . . . . . . . . . 13 |
34 | 33 | biimprcd 159 | . . . . . . . . . . . 12 |
35 | 34 | adantl 275 | . . . . . . . . . . 11 |
36 | 35 | impcom 124 | . . . . . . . . . 10 |
37 | 6, 26, 36 | 3jca 1172 | . . . . . . . . 9 |
38 | 37 | exp31 362 | . . . . . . . 8 |
39 | 38 | com23 78 | . . . . . . 7 |
40 | 39 | 3adant2 1011 | . . . . . 6 |
41 | 40 | imp 123 | . . . . 5 |
42 | 41 | com12 30 | . . . 4 |
43 | 1, 42 | syl5bi 151 | . . 3 |
44 | 43 | imp 123 | . 2 |
45 | elfz2nn0 10055 | . 2 | |
46 | 44, 45 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wcel 2141 class class class wbr 3987 (class class class)co 5850 cr 7760 cc0 7761 caddc 7764 cle 7942 cmin 8077 cn0 9122 cz 9199 cfz 9952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-n0 9123 df-z 9200 df-uz 9475 df-fz 9953 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |