ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzmlbp Unicode version

Theorem elfzmlbp 10067
Description: Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.)
Assertion
Ref Expression
elfzmlbp  |-  ( ( N  e.  ZZ  /\  K  e.  ( M ... ( M  +  N
) ) )  -> 
( K  -  M
)  e.  ( 0 ... N ) )

Proof of Theorem elfzmlbp
StepHypRef Expression
1 elfz2 9951 . . . 4  |-  ( K  e.  ( M ... ( M  +  N
) )  <->  ( ( M  e.  ZZ  /\  ( M  +  N )  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  ( M  +  N
) ) ) )
2 znn0sub 9256 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <_  K  <->  ( K  -  M )  e.  NN0 ) )
32adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( M  <_  K 
<->  ( K  -  M
)  e.  NN0 )
)
43biimpcd 158 . . . . . . . . . . . 12  |-  ( M  <_  K  ->  (
( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( K  -  M )  e.  NN0 ) )
54adantr 274 . . . . . . . . . . 11  |-  ( ( M  <_  K  /\  K  <_  ( M  +  N ) )  -> 
( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( K  -  M )  e.  NN0 ) )
65impcom 124 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  ( M  +  N
) ) )  -> 
( K  -  M
)  e.  NN0 )
7 zre 9195 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  M  e.  RR )
87adantr 274 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  M  e.  RR )
98adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  M  e.  RR )
10 zre 9195 . . . . . . . . . . . . . . 15  |-  ( K  e.  ZZ  ->  K  e.  RR )
1110adantl 275 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  K  e.  RR )
1211adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  K  e.  RR )
13 zaddcl 9231 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
1413adantlr 469 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( M  +  N )  e.  ZZ )
1514zred 9313 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( M  +  N )  e.  RR )
16 letr 7981 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  K  e.  RR  /\  ( M  +  N )  e.  RR )  ->  (
( M  <_  K  /\  K  <_  ( M  +  N ) )  ->  M  <_  ( M  +  N )
) )
179, 12, 15, 16syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( ( M  <_  K  /\  K  <_  ( M  +  N
) )  ->  M  <_  ( M  +  N
) ) )
18 zre 9195 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  N  e.  RR )
19 addge01 8370 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( 0  <_  N  <->  M  <_  ( M  +  N ) ) )
208, 18, 19syl2an 287 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( 0  <_  N 
<->  M  <_  ( M  +  N ) ) )
21 elnn0z 9204 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  <->  ( N  e.  ZZ  /\  0  <_  N ) )
2221simplbi2 383 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  (
0  <_  N  ->  N  e.  NN0 ) )
2322adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( 0  <_  N  ->  N  e.  NN0 ) )
2420, 23sylbird 169 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( M  <_ 
( M  +  N
)  ->  N  e.  NN0 ) )
2517, 24syld 45 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( ( M  <_  K  /\  K  <_  ( M  +  N
) )  ->  N  e.  NN0 ) )
2625imp 123 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  ( M  +  N
) ) )  ->  N  e.  NN0 )
27 df-3an 970 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ ) )
28 3ancoma 975 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  <->  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )
2927, 28bitr3i 185 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ ) 
<->  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )
)
3010, 7, 183anim123i 1174 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  RR  /\  M  e.  RR  /\  N  e.  RR ) )
3129, 30sylbi 120 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( K  e.  RR  /\  M  e.  RR  /\  N  e.  RR ) )
32 lesubadd2 8333 . . . . . . . . . . . . . 14  |-  ( ( K  e.  RR  /\  M  e.  RR  /\  N  e.  RR )  ->  (
( K  -  M
)  <_  N  <->  K  <_  ( M  +  N ) ) )
3331, 32syl 14 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( ( K  -  M )  <_  N 
<->  K  <_  ( M  +  N ) ) )
3433biimprcd 159 . . . . . . . . . . . 12  |-  ( K  <_  ( M  +  N )  ->  (
( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( K  -  M )  <_  N ) )
3534adantl 275 . . . . . . . . . . 11  |-  ( ( M  <_  K  /\  K  <_  ( M  +  N ) )  -> 
( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( K  -  M )  <_  N ) )
3635impcom 124 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  ( M  +  N
) ) )  -> 
( K  -  M
)  <_  N )
376, 26, 363jca 1167 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  ( M  +  N
) ) )  -> 
( ( K  -  M )  e.  NN0  /\  N  e.  NN0  /\  ( K  -  M
)  <_  N )
)
3837exp31 362 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  e.  ZZ  ->  ( ( M  <_  K  /\  K  <_  ( M  +  N )
)  ->  ( ( K  -  M )  e.  NN0  /\  N  e. 
NN0  /\  ( K  -  M )  <_  N
) ) ) )
3938com23 78 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( M  <_  K  /\  K  <_  ( M  +  N )
)  ->  ( N  e.  ZZ  ->  ( ( K  -  M )  e.  NN0  /\  N  e. 
NN0  /\  ( K  -  M )  <_  N
) ) ) )
40393adant2 1006 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( M  +  N
)  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( M  <_  K  /\  K  <_  ( M  +  N )
)  ->  ( N  e.  ZZ  ->  ( ( K  -  M )  e.  NN0  /\  N  e. 
NN0  /\  ( K  -  M )  <_  N
) ) ) )
4140imp 123 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  ( M  +  N
)  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  ( M  +  N ) ) )  ->  ( N  e.  ZZ  ->  ( ( K  -  M )  e.  NN0  /\  N  e. 
NN0  /\  ( K  -  M )  <_  N
) ) )
4241com12 30 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( M  e.  ZZ  /\  ( M  +  N )  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  ( M  +  N
) ) )  -> 
( ( K  -  M )  e.  NN0  /\  N  e.  NN0  /\  ( K  -  M
)  <_  N )
) )
431, 42syl5bi 151 . . 3  |-  ( N  e.  ZZ  ->  ( K  e.  ( M ... ( M  +  N
) )  ->  (
( K  -  M
)  e.  NN0  /\  N  e.  NN0  /\  ( K  -  M )  <_  N ) ) )
4443imp 123 . 2  |-  ( ( N  e.  ZZ  /\  K  e.  ( M ... ( M  +  N
) ) )  -> 
( ( K  -  M )  e.  NN0  /\  N  e.  NN0  /\  ( K  -  M
)  <_  N )
)
45 elfz2nn0 10047 . 2  |-  ( ( K  -  M )  e.  ( 0 ... N )  <->  ( ( K  -  M )  e.  NN0  /\  N  e. 
NN0  /\  ( K  -  M )  <_  N
) )
4644, 45sylibr 133 1  |-  ( ( N  e.  ZZ  /\  K  e.  ( M ... ( M  +  N
) ) )  -> 
( K  -  M
)  e.  ( 0 ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753    + caddc 7756    <_ cle 7934    - cmin 8069   NN0cn0 9114   ZZcz 9191   ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator