ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efrirr Unicode version

Theorem efrirr 4331
Description: Irreflexivity of the epsilon relation: a class founded by epsilon is not a member of itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
efrirr  |-  (  _E  Fr  A  ->  -.  A  e.  A )

Proof of Theorem efrirr
StepHypRef Expression
1 frirrg 4328 . . . 4  |-  ( (  _E  Fr  A  /\  A  e.  A  /\  A  e.  A )  ->  -.  A  _E  A
)
213anidm23 1287 . . 3  |-  ( (  _E  Fr  A  /\  A  e.  A )  ->  -.  A  _E  A
)
3 epelg 4268 . . . 4  |-  ( A  e.  A  ->  ( A  _E  A  <->  A  e.  A ) )
43adantl 275 . . 3  |-  ( (  _E  Fr  A  /\  A  e.  A )  ->  ( A  _E  A  <->  A  e.  A ) )
52, 4mtbid 662 . 2  |-  ( (  _E  Fr  A  /\  A  e.  A )  ->  -.  A  e.  A
)
65pm2.01da 626 1  |-  (  _E  Fr  A  ->  -.  A  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   class class class wbr 3982    _E cep 4265    Fr wfr 4306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-eprel 4267  df-frfor 4309  df-frind 4310
This theorem is referenced by:  tz7.2  4332
  Copyright terms: Public domain W3C validator