ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  avglt2 Unicode version

Theorem avglt2 9248
Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
Assertion
Ref Expression
avglt2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( ( A  +  B
)  /  2 )  <  B ) )

Proof of Theorem avglt2
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
21recnd 8072 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
3 2times 9135 . . . 4  |-  ( B  e.  CC  ->  (
2  x.  B )  =  ( B  +  B ) )
42, 3syl 14 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  B
)  =  ( B  +  B ) )
54breq2d 4046 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  B )  <  (
2  x.  B )  <-> 
( A  +  B
)  <  ( B  +  B ) ) )
6 readdcl 8022 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
7 2re 9077 . . . . 5  |-  2  e.  RR
8 2pos 9098 . . . . 5  |-  0  <  2
97, 8pm3.2i 272 . . . 4  |-  ( 2  e.  RR  /\  0  <  2 )
109a1i 9 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  e.  RR  /\  0  <  2 ) )
11 ltdivmul 8920 . . 3  |-  ( ( ( A  +  B
)  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( A  +  B )  /  2 )  < 
B  <->  ( A  +  B )  <  (
2  x.  B ) ) )
126, 1, 10, 11syl3anc 1249 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  B )  / 
2 )  <  B  <->  ( A  +  B )  <  ( 2  x.  B ) ) )
13 ltadd1 8473 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( A  +  B )  <  ( B  +  B )
) )
14133anidm23 1308 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( A  +  B )  <  ( B  +  B ) ) )
155, 12, 143bitr4rd 221 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( ( A  +  B
)  /  2 )  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896    + caddc 7899    x. cmul 7901    < clt 8078    / cdiv 8716   2c2 9058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-2 9066
This theorem is referenced by:  avgle1  9249  apdifflemf  15777
  Copyright terms: Public domain W3C validator