ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efsub Unicode version

Theorem efsub 11399
Description: Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
Assertion
Ref Expression
efsub  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( A  -  B )
)  =  ( ( exp `  A )  /  ( exp `  B
) ) )

Proof of Theorem efsub
StepHypRef Expression
1 efcl 11382 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  A )  e.  CC )
213ad2ant1 1002 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  e.  CC )  ->  ( exp `  A )  e.  CC )
3 efcl 11382 . . . . 5  |-  ( B  e.  CC  ->  ( exp `  B )  e.  CC )
433ad2ant2 1003 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  e.  CC )  ->  ( exp `  B )  e.  CC )
5 efap0 11395 . . . . 5  |-  ( B  e.  CC  ->  ( exp `  B ) #  0 )
653ad2ant2 1003 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  e.  CC )  ->  ( exp `  B ) #  0 )
72, 4, 6divrecapd 8565 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  e.  CC )  ->  (
( exp `  A
)  /  ( exp `  B ) )  =  ( ( exp `  A
)  x.  ( 1  /  ( exp `  B
) ) ) )
873anidm23 1275 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  A
)  /  ( exp `  B ) )  =  ( ( exp `  A
)  x.  ( 1  /  ( exp `  B
) ) ) )
9 efcan 11394 . . . . . . 7  |-  ( B  e.  CC  ->  (
( exp `  B
)  x.  ( exp `  -u B ) )  =  1 )
109eqcomd 2145 . . . . . 6  |-  ( B  e.  CC  ->  1  =  ( ( exp `  B )  x.  ( exp `  -u B ) ) )
11 1cnd 7794 . . . . . . 7  |-  ( B  e.  CC  ->  1  e.  CC )
12 negcl 7974 . . . . . . . 8  |-  ( B  e.  CC  ->  -u B  e.  CC )
13 efcl 11382 . . . . . . . 8  |-  ( -u B  e.  CC  ->  ( exp `  -u B
)  e.  CC )
1412, 13syl 14 . . . . . . 7  |-  ( B  e.  CC  ->  ( exp `  -u B )  e.  CC )
1511, 14, 3, 5divmulap2d 8596 . . . . . 6  |-  ( B  e.  CC  ->  (
( 1  /  ( exp `  B ) )  =  ( exp `  -u B
)  <->  1  =  ( ( exp `  B
)  x.  ( exp `  -u B ) ) ) )
1610, 15mpbird 166 . . . . 5  |-  ( B  e.  CC  ->  (
1  /  ( exp `  B ) )  =  ( exp `  -u B
) )
1716oveq2d 5790 . . . 4  |-  ( B  e.  CC  ->  (
( exp `  A
)  x.  ( 1  /  ( exp `  B
) ) )  =  ( ( exp `  A
)  x.  ( exp `  -u B ) ) )
1817adantl 275 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  A
)  x.  ( 1  /  ( exp `  B
) ) )  =  ( ( exp `  A
)  x.  ( exp `  -u B ) ) )
19 efadd 11393 . . . 4  |-  ( ( A  e.  CC  /\  -u B  e.  CC )  ->  ( exp `  ( A  +  -u B ) )  =  ( ( exp `  A )  x.  ( exp `  -u B
) ) )
2012, 19sylan2 284 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( A  +  -u B ) )  =  ( ( exp `  A )  x.  ( exp `  -u B
) ) )
2118, 20eqtr4d 2175 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  A
)  x.  ( 1  /  ( exp `  B
) ) )  =  ( exp `  ( A  +  -u B ) ) )
22 negsub 8022 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
2322fveq2d 5425 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( A  +  -u B ) )  =  ( exp `  ( A  -  B
) ) )
248, 21, 233eqtrrd 2177 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( A  -  B )
)  =  ( ( exp `  A )  /  ( exp `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7630   0cc0 7632   1c1 7633    + caddc 7635    x. cmul 7637    - cmin 7945   -ucneg 7946   # cap 8355    / cdiv 8444   expce 11360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-q 9424  df-rp 9454  df-ico 9689  df-fz 9803  df-fzo 9932  df-seqfrec 10231  df-exp 10305  df-fac 10484  df-bc 10506  df-ihash 10534  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783  df-clim 11060  df-sumdc 11135  df-ef 11366
This theorem is referenced by:  reeff1oleme  12876  relogdiv  12971
  Copyright terms: Public domain W3C validator