ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr3d Unicode version

Theorem 3eltr3d 2276
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr3d.1  |-  ( ph  ->  A  e.  B )
3eltr3d.2  |-  ( ph  ->  A  =  C )
3eltr3d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
3eltr3d  |-  ( ph  ->  C  e.  D )

Proof of Theorem 3eltr3d
StepHypRef Expression
1 3eltr3d.2 . 2  |-  ( ph  ->  A  =  C )
2 3eltr3d.1 . . 3  |-  ( ph  ->  A  e.  B )
3 3eltr3d.3 . . 3  |-  ( ph  ->  B  =  D )
42, 3eleqtrd 2272 . 2  |-  ( ph  ->  A  e.  D )
51, 4eqeltrrd 2271 1  |-  ( ph  ->  C  e.  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189
This theorem is referenced by:  reg3exmidlemwe  4611  nnaordi  6561  icoshftf1o  10057  lincmb01cmp  10069  fzosubel  10261  cnmpt2res  14465  dvcnp2cntop  14848
  Copyright terms: Public domain W3C validator