ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr3d Unicode version

Theorem 3eltr3d 2290
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr3d.1  |-  ( ph  ->  A  e.  B )
3eltr3d.2  |-  ( ph  ->  A  =  C )
3eltr3d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
3eltr3d  |-  ( ph  ->  C  e.  D )

Proof of Theorem 3eltr3d
StepHypRef Expression
1 3eltr3d.2 . 2  |-  ( ph  ->  A  =  C )
2 3eltr3d.1 . . 3  |-  ( ph  ->  A  e.  B )
3 3eltr3d.3 . . 3  |-  ( ph  ->  B  =  D )
42, 3eleqtrd 2286 . 2  |-  ( ph  ->  A  e.  D )
51, 4eqeltrrd 2285 1  |-  ( ph  ->  C  e.  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-cleq 2200  df-clel 2203
This theorem is referenced by:  reg3exmidlemwe  4645  nnaordi  6617  icoshftf1o  10148  lincmb01cmp  10160  fzosubel  10360  cnmpt2res  14884  dvcnp2cntop  15286
  Copyright terms: Public domain W3C validator