ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr3d Unicode version

Theorem 3eltr3d 2279
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr3d.1  |-  ( ph  ->  A  e.  B )
3eltr3d.2  |-  ( ph  ->  A  =  C )
3eltr3d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
3eltr3d  |-  ( ph  ->  C  e.  D )

Proof of Theorem 3eltr3d
StepHypRef Expression
1 3eltr3d.2 . 2  |-  ( ph  ->  A  =  C )
2 3eltr3d.1 . . 3  |-  ( ph  ->  A  e.  B )
3 3eltr3d.3 . . 3  |-  ( ph  ->  B  =  D )
42, 3eleqtrd 2275 . 2  |-  ( ph  ->  A  e.  D )
51, 4eqeltrrd 2274 1  |-  ( ph  ->  C  e.  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192
This theorem is referenced by:  reg3exmidlemwe  4615  nnaordi  6566  icoshftf1o  10066  lincmb01cmp  10078  fzosubel  10270  cnmpt2res  14533  dvcnp2cntop  14935
  Copyright terms: Public domain W3C validator