ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr3d Unicode version

Theorem 3eltr3d 2253
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr3d.1  |-  ( ph  ->  A  e.  B )
3eltr3d.2  |-  ( ph  ->  A  =  C )
3eltr3d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
3eltr3d  |-  ( ph  ->  C  e.  D )

Proof of Theorem 3eltr3d
StepHypRef Expression
1 3eltr3d.2 . 2  |-  ( ph  ->  A  =  C )
2 3eltr3d.1 . . 3  |-  ( ph  ->  A  e.  B )
3 3eltr3d.3 . . 3  |-  ( ph  ->  B  =  D )
42, 3eleqtrd 2249 . 2  |-  ( ph  ->  A  e.  D )
51, 4eqeltrrd 2248 1  |-  ( ph  ->  C  e.  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166
This theorem is referenced by:  reg3exmidlemwe  4563  nnaordi  6487  icoshftf1o  9948  lincmb01cmp  9960  fzosubel  10150  cnmpt2res  13091  dvcnp2cntop  13457
  Copyright terms: Public domain W3C validator