ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzosubel Unicode version

Theorem fzosubel 10323
Description: Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzosubel  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  -  D )  e.  ( ( B  -  D )..^ ( C  -  D ) ) )

Proof of Theorem fzosubel
StepHypRef Expression
1 znegcl 9403 . . 3  |-  ( D  e.  ZZ  ->  -u D  e.  ZZ )
2 fzoaddel 10316 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  -u D  e.  ZZ )  ->  ( A  +  -u D )  e.  ( ( B  +  -u D )..^ ( C  +  -u D
) ) )
31, 2sylan2 286 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  +  -u D )  e.  ( ( B  +  -u D )..^ ( C  +  -u D
) ) )
4 elfzoelz 10269 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  A  e.  ZZ )
54adantr 276 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  e.  ZZ )
65zcnd 9496 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  e.  CC )
7 simpr 110 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  D  e.  ZZ )
87zcnd 9496 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  D  e.  CC )
96, 8negsubd 8389 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  +  -u D )  =  ( A  -  D ) )
10 elfzoel1 10267 . . . . . 6  |-  ( A  e.  ( B..^ C
)  ->  B  e.  ZZ )
1110adantr 276 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  e.  ZZ )
1211zcnd 9496 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  e.  CC )
1312, 8negsubd 8389 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( B  +  -u D )  =  ( B  -  D ) )
14 elfzoel2 10268 . . . . . 6  |-  ( A  e.  ( B..^ C
)  ->  C  e.  ZZ )
1514adantr 276 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  C  e.  ZZ )
1615zcnd 9496 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  C  e.  CC )
1716, 8negsubd 8389 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( C  +  -u D )  =  ( C  -  D ) )
1813, 17oveq12d 5962 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
( B  +  -u D )..^ ( C  +  -u D ) )  =  ( ( B  -  D )..^ ( C  -  D ) ) )
193, 9, 183eltr3d 2288 1  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  -  D )  e.  ( ( B  -  D )..^ ( C  -  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176  (class class class)co 5944    + caddc 7928    - cmin 8243   -ucneg 8244   ZZcz 9372  ..^cfzo 10264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265
This theorem is referenced by:  fzosubel2  10324  fzocatel  10328
  Copyright terms: Public domain W3C validator