Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnaordi | Unicode version |
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
nnaordi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5850 | . . . . . . . . 9 | |
2 | oveq2 5850 | . . . . . . . . 9 | |
3 | 1, 2 | eleq12d 2237 | . . . . . . . 8 |
4 | 3 | imbi2d 229 | . . . . . . 7 |
5 | oveq2 5850 | . . . . . . . . 9 | |
6 | oveq2 5850 | . . . . . . . . 9 | |
7 | 5, 6 | eleq12d 2237 | . . . . . . . 8 |
8 | oveq2 5850 | . . . . . . . . 9 | |
9 | oveq2 5850 | . . . . . . . . 9 | |
10 | 8, 9 | eleq12d 2237 | . . . . . . . 8 |
11 | oveq2 5850 | . . . . . . . . 9 | |
12 | oveq2 5850 | . . . . . . . . 9 | |
13 | 11, 12 | eleq12d 2237 | . . . . . . . 8 |
14 | simpr 109 | . . . . . . . . 9 | |
15 | elnn 4583 | . . . . . . . . . . 11 | |
16 | 15 | ancoms 266 | . . . . . . . . . 10 |
17 | nna0 6442 | . . . . . . . . . 10 | |
18 | 16, 17 | syl 14 | . . . . . . . . 9 |
19 | nna0 6442 | . . . . . . . . . 10 | |
20 | 19 | adantr 274 | . . . . . . . . 9 |
21 | 14, 18, 20 | 3eltr4d 2250 | . . . . . . . 8 |
22 | simprl 521 | . . . . . . . . . . . . 13 | |
23 | simpl 108 | . . . . . . . . . . . . 13 | |
24 | nnacl 6448 | . . . . . . . . . . . . 13 | |
25 | 22, 23, 24 | syl2anc 409 | . . . . . . . . . . . 12 |
26 | nnsucelsuc 6459 | . . . . . . . . . . . 12 | |
27 | 25, 26 | syl 14 | . . . . . . . . . . 11 |
28 | 16 | adantl 275 | . . . . . . . . . . . . . 14 |
29 | nnon 4587 | . . . . . . . . . . . . . 14 | |
30 | 28, 29 | syl 14 | . . . . . . . . . . . . 13 |
31 | nnon 4587 | . . . . . . . . . . . . . 14 | |
32 | 31 | adantr 274 | . . . . . . . . . . . . 13 |
33 | oasuc 6432 | . . . . . . . . . . . . 13 | |
34 | 30, 32, 33 | syl2anc 409 | . . . . . . . . . . . 12 |
35 | nnon 4587 | . . . . . . . . . . . . . 14 | |
36 | 35 | ad2antrl 482 | . . . . . . . . . . . . 13 |
37 | oasuc 6432 | . . . . . . . . . . . . 13 | |
38 | 36, 32, 37 | syl2anc 409 | . . . . . . . . . . . 12 |
39 | 34, 38 | eleq12d 2237 | . . . . . . . . . . 11 |
40 | 27, 39 | bitr4d 190 | . . . . . . . . . 10 |
41 | 40 | biimpd 143 | . . . . . . . . 9 |
42 | 41 | ex 114 | . . . . . . . 8 |
43 | 7, 10, 13, 21, 42 | finds2 4578 | . . . . . . 7 |
44 | 4, 43 | vtoclga 2792 | . . . . . 6 |
45 | 44 | imp 123 | . . . . 5 |
46 | 16 | adantl 275 | . . . . . 6 |
47 | simpl 108 | . . . . . 6 | |
48 | nnacom 6452 | . . . . . 6 | |
49 | 46, 47, 48 | syl2anc 409 | . . . . 5 |
50 | nnacom 6452 | . . . . . . 7 | |
51 | 50 | ancoms 266 | . . . . . 6 |
52 | 51 | adantrr 471 | . . . . 5 |
53 | 45, 49, 52 | 3eltr3d 2249 | . . . 4 |
54 | 53 | 3impb 1189 | . . 3 |
55 | 54 | 3com12 1197 | . 2 |
56 | 55 | 3expia 1195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 c0 3409 con0 4341 csuc 4343 com 4567 (class class class)co 5842 coa 6381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 |
This theorem is referenced by: nnaord 6477 nnmordi 6484 addclpi 7268 addnidpig 7277 archnqq 7358 prarloclemarch2 7360 prarloclemlt 7434 |
Copyright terms: Public domain | W3C validator |