ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaordi Unicode version

Theorem nnaordi 6617
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordi  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )

Proof of Theorem nnaordi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5975 . . . . . . . . 9  |-  ( x  =  C  ->  ( A  +o  x )  =  ( A  +o  C
) )
2 oveq2 5975 . . . . . . . . 9  |-  ( x  =  C  ->  ( B  +o  x )  =  ( B  +o  C
) )
31, 2eleq12d 2278 . . . . . . . 8  |-  ( x  =  C  ->  (
( A  +o  x
)  e.  ( B  +o  x )  <->  ( A  +o  C )  e.  ( B  +o  C ) ) )
43imbi2d 230 . . . . . . 7  |-  ( x  =  C  ->  (
( ( B  e. 
om  /\  A  e.  B )  ->  ( A  +o  x )  e.  ( B  +o  x
) )  <->  ( ( B  e.  om  /\  A  e.  B )  ->  ( A  +o  C )  e.  ( B  +o  C
) ) ) )
5 oveq2 5975 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( A  +o  x )  =  ( A  +o  (/) ) )
6 oveq2 5975 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
75, 6eleq12d 2278 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( A  +o  x )  e.  ( B  +o  x )  <->  ( A  +o  (/) )  e.  ( B  +o  (/) ) ) )
8 oveq2 5975 . . . . . . . . 9  |-  ( x  =  y  ->  ( A  +o  x )  =  ( A  +o  y
) )
9 oveq2 5975 . . . . . . . . 9  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
108, 9eleq12d 2278 . . . . . . . 8  |-  ( x  =  y  ->  (
( A  +o  x
)  e.  ( B  +o  x )  <->  ( A  +o  y )  e.  ( B  +o  y ) ) )
11 oveq2 5975 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( A  +o  x
)  =  ( A  +o  suc  y ) )
12 oveq2 5975 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1311, 12eleq12d 2278 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ( A  +o  x )  e.  ( B  +o  x )  <-> 
( A  +o  suc  y )  e.  ( B  +o  suc  y
) ) )
14 simpr 110 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  B )  ->  A  e.  B )
15 elnn 4672 . . . . . . . . . . 11  |-  ( ( A  e.  B  /\  B  e.  om )  ->  A  e.  om )
1615ancoms 268 . . . . . . . . . 10  |-  ( ( B  e.  om  /\  A  e.  B )  ->  A  e.  om )
17 nna0 6583 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
1816, 17syl 14 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  B )  ->  ( A  +o  (/) )  =  A )
19 nna0 6583 . . . . . . . . . 10  |-  ( B  e.  om  ->  ( B  +o  (/) )  =  B )
2019adantr 276 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  B )  ->  ( B  +o  (/) )  =  B )
2114, 18, 203eltr4d 2291 . . . . . . . 8  |-  ( ( B  e.  om  /\  A  e.  B )  ->  ( A  +o  (/) )  e.  ( B  +o  (/) ) )
22 simprl 529 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  B  e.  om )
23 simpl 109 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  y  e.  om )
24 nnacl 6589 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  y
)  e.  om )
2522, 23, 24syl2anc 411 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( B  +o  y )  e.  om )
26 nnsucelsuc 6600 . . . . . . . . . . . 12  |-  ( ( B  +o  y )  e.  om  ->  (
( A  +o  y
)  e.  ( B  +o  y )  <->  suc  ( A  +o  y )  e. 
suc  ( B  +o  y ) ) )
2725, 26syl 14 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  <->  suc  ( A  +o  y )  e.  suc  ( B  +o  y
) ) )
2816adantl 277 . . . . . . . . . . . . . 14  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  A  e.  om )
29 nnon 4676 . . . . . . . . . . . . . 14  |-  ( A  e.  om  ->  A  e.  On )
3028, 29syl 14 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  A  e.  On )
31 nnon 4676 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  y  e.  On )
3231adantr 276 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  y  e.  On )
33 oasuc 6573 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
3430, 32, 33syl2anc 411 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y ) )
35 nnon 4676 . . . . . . . . . . . . . 14  |-  ( B  e.  om  ->  B  e.  On )
3635ad2antrl 490 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  B  e.  On )
37 oasuc 6573 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
3836, 32, 37syl2anc 411 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y ) )
3934, 38eleq12d 2278 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  suc  y )  e.  ( B  +o  suc  y )  <->  suc  ( A  +o  y )  e. 
suc  ( B  +o  y ) ) )
4027, 39bitr4d 191 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  <->  ( A  +o  suc  y )  e.  ( B  +o  suc  y
) ) )
4140biimpd 144 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  ->  ( A  +o  suc  y )  e.  ( B  +o  suc  y ) ) )
4241ex 115 . . . . . . . 8  |-  ( y  e.  om  ->  (
( B  e.  om  /\  A  e.  B )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  ->  ( A  +o  suc  y )  e.  ( B  +o  suc  y ) ) ) )
437, 10, 13, 21, 42finds2 4667 . . . . . . 7  |-  ( x  e.  om  ->  (
( B  e.  om  /\  A  e.  B )  ->  ( A  +o  x )  e.  ( B  +o  x ) ) )
444, 43vtoclga 2844 . . . . . 6  |-  ( C  e.  om  ->  (
( B  e.  om  /\  A  e.  B )  ->  ( A  +o  C )  e.  ( B  +o  C ) ) )
4544imp 124 . . . . 5  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( A  +o  C )  e.  ( B  +o  C ) )
4616adantl 277 . . . . . 6  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  A  e.  om )
47 simpl 109 . . . . . 6  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  C  e.  om )
48 nnacom 6593 . . . . . 6  |-  ( ( A  e.  om  /\  C  e.  om )  ->  ( A  +o  C
)  =  ( C  +o  A ) )
4946, 47, 48syl2anc 411 . . . . 5  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( A  +o  C )  =  ( C  +o  A ) )
50 nnacom 6593 . . . . . . 7  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( B  +o  C
)  =  ( C  +o  B ) )
5150ancoms 268 . . . . . 6  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( B  +o  C
)  =  ( C  +o  B ) )
5251adantrr 479 . . . . 5  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( B  +o  C )  =  ( C  +o  B ) )
5345, 49, 523eltr3d 2290 . . . 4  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( C  +o  A )  e.  ( C  +o  B ) )
54533impb 1202 . . 3  |-  ( ( C  e.  om  /\  B  e.  om  /\  A  e.  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
55543com12 1210 . 2  |-  ( ( B  e.  om  /\  C  e.  om  /\  A  e.  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
56553expia 1208 1  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   (/)c0 3468   Oncon0 4428   suc csuc 4430   omcom 4656  (class class class)co 5967    +o coa 6522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-oadd 6529
This theorem is referenced by:  nnaord  6618  nnmordi  6625  addclpi  7475  addnidpig  7484  archnqq  7565  prarloclemarch2  7567  prarloclemlt  7641
  Copyright terms: Public domain W3C validator