ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaordi Unicode version

Theorem nnaordi 6412
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordi  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )

Proof of Theorem nnaordi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5790 . . . . . . . . 9  |-  ( x  =  C  ->  ( A  +o  x )  =  ( A  +o  C
) )
2 oveq2 5790 . . . . . . . . 9  |-  ( x  =  C  ->  ( B  +o  x )  =  ( B  +o  C
) )
31, 2eleq12d 2211 . . . . . . . 8  |-  ( x  =  C  ->  (
( A  +o  x
)  e.  ( B  +o  x )  <->  ( A  +o  C )  e.  ( B  +o  C ) ) )
43imbi2d 229 . . . . . . 7  |-  ( x  =  C  ->  (
( ( B  e. 
om  /\  A  e.  B )  ->  ( A  +o  x )  e.  ( B  +o  x
) )  <->  ( ( B  e.  om  /\  A  e.  B )  ->  ( A  +o  C )  e.  ( B  +o  C
) ) ) )
5 oveq2 5790 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( A  +o  x )  =  ( A  +o  (/) ) )
6 oveq2 5790 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
75, 6eleq12d 2211 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( A  +o  x )  e.  ( B  +o  x )  <->  ( A  +o  (/) )  e.  ( B  +o  (/) ) ) )
8 oveq2 5790 . . . . . . . . 9  |-  ( x  =  y  ->  ( A  +o  x )  =  ( A  +o  y
) )
9 oveq2 5790 . . . . . . . . 9  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
108, 9eleq12d 2211 . . . . . . . 8  |-  ( x  =  y  ->  (
( A  +o  x
)  e.  ( B  +o  x )  <->  ( A  +o  y )  e.  ( B  +o  y ) ) )
11 oveq2 5790 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( A  +o  x
)  =  ( A  +o  suc  y ) )
12 oveq2 5790 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1311, 12eleq12d 2211 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ( A  +o  x )  e.  ( B  +o  x )  <-> 
( A  +o  suc  y )  e.  ( B  +o  suc  y
) ) )
14 simpr 109 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  B )  ->  A  e.  B )
15 elnn 4527 . . . . . . . . . . 11  |-  ( ( A  e.  B  /\  B  e.  om )  ->  A  e.  om )
1615ancoms 266 . . . . . . . . . 10  |-  ( ( B  e.  om  /\  A  e.  B )  ->  A  e.  om )
17 nna0 6378 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
1816, 17syl 14 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  B )  ->  ( A  +o  (/) )  =  A )
19 nna0 6378 . . . . . . . . . 10  |-  ( B  e.  om  ->  ( B  +o  (/) )  =  B )
2019adantr 274 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  B )  ->  ( B  +o  (/) )  =  B )
2114, 18, 203eltr4d 2224 . . . . . . . 8  |-  ( ( B  e.  om  /\  A  e.  B )  ->  ( A  +o  (/) )  e.  ( B  +o  (/) ) )
22 simprl 521 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  B  e.  om )
23 simpl 108 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  y  e.  om )
24 nnacl 6384 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  y
)  e.  om )
2522, 23, 24syl2anc 409 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( B  +o  y )  e.  om )
26 nnsucelsuc 6395 . . . . . . . . . . . 12  |-  ( ( B  +o  y )  e.  om  ->  (
( A  +o  y
)  e.  ( B  +o  y )  <->  suc  ( A  +o  y )  e. 
suc  ( B  +o  y ) ) )
2725, 26syl 14 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  <->  suc  ( A  +o  y )  e.  suc  ( B  +o  y
) ) )
2816adantl 275 . . . . . . . . . . . . . 14  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  A  e.  om )
29 nnon 4531 . . . . . . . . . . . . . 14  |-  ( A  e.  om  ->  A  e.  On )
3028, 29syl 14 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  A  e.  On )
31 nnon 4531 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  y  e.  On )
3231adantr 274 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  y  e.  On )
33 oasuc 6368 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
3430, 32, 33syl2anc 409 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y ) )
35 nnon 4531 . . . . . . . . . . . . . 14  |-  ( B  e.  om  ->  B  e.  On )
3635ad2antrl 482 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  B  e.  On )
37 oasuc 6368 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
3836, 32, 37syl2anc 409 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y ) )
3934, 38eleq12d 2211 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  suc  y )  e.  ( B  +o  suc  y )  <->  suc  ( A  +o  y )  e. 
suc  ( B  +o  y ) ) )
4027, 39bitr4d 190 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  <->  ( A  +o  suc  y )  e.  ( B  +o  suc  y
) ) )
4140biimpd 143 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  ->  ( A  +o  suc  y )  e.  ( B  +o  suc  y ) ) )
4241ex 114 . . . . . . . 8  |-  ( y  e.  om  ->  (
( B  e.  om  /\  A  e.  B )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  ->  ( A  +o  suc  y )  e.  ( B  +o  suc  y ) ) ) )
437, 10, 13, 21, 42finds2 4523 . . . . . . 7  |-  ( x  e.  om  ->  (
( B  e.  om  /\  A  e.  B )  ->  ( A  +o  x )  e.  ( B  +o  x ) ) )
444, 43vtoclga 2755 . . . . . 6  |-  ( C  e.  om  ->  (
( B  e.  om  /\  A  e.  B )  ->  ( A  +o  C )  e.  ( B  +o  C ) ) )
4544imp 123 . . . . 5  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( A  +o  C )  e.  ( B  +o  C ) )
4616adantl 275 . . . . . 6  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  A  e.  om )
47 simpl 108 . . . . . 6  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  C  e.  om )
48 nnacom 6388 . . . . . 6  |-  ( ( A  e.  om  /\  C  e.  om )  ->  ( A  +o  C
)  =  ( C  +o  A ) )
4946, 47, 48syl2anc 409 . . . . 5  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( A  +o  C )  =  ( C  +o  A ) )
50 nnacom 6388 . . . . . . 7  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( B  +o  C
)  =  ( C  +o  B ) )
5150ancoms 266 . . . . . 6  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( B  +o  C
)  =  ( C  +o  B ) )
5251adantrr 471 . . . . 5  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( B  +o  C )  =  ( C  +o  B ) )
5345, 49, 523eltr3d 2223 . . . 4  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( C  +o  A )  e.  ( C  +o  B ) )
54533impb 1178 . . 3  |-  ( ( C  e.  om  /\  B  e.  om  /\  A  e.  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
55543com12 1186 . 2  |-  ( ( B  e.  om  /\  C  e.  om  /\  A  e.  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
56553expia 1184 1  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   (/)c0 3368   Oncon0 4293   suc csuc 4295   omcom 4512  (class class class)co 5782    +o coa 6318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325
This theorem is referenced by:  nnaord  6413  nnmordi  6420  addclpi  7159  addnidpig  7168  archnqq  7249  prarloclemarch2  7251  prarloclemlt  7325
  Copyright terms: Public domain W3C validator