| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnaordi | Unicode version | ||
| Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnaordi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6009 |
. . . . . . . . 9
| |
| 2 | oveq2 6009 |
. . . . . . . . 9
| |
| 3 | 1, 2 | eleq12d 2300 |
. . . . . . . 8
|
| 4 | 3 | imbi2d 230 |
. . . . . . 7
|
| 5 | oveq2 6009 |
. . . . . . . . 9
| |
| 6 | oveq2 6009 |
. . . . . . . . 9
| |
| 7 | 5, 6 | eleq12d 2300 |
. . . . . . . 8
|
| 8 | oveq2 6009 |
. . . . . . . . 9
| |
| 9 | oveq2 6009 |
. . . . . . . . 9
| |
| 10 | 8, 9 | eleq12d 2300 |
. . . . . . . 8
|
| 11 | oveq2 6009 |
. . . . . . . . 9
| |
| 12 | oveq2 6009 |
. . . . . . . . 9
| |
| 13 | 11, 12 | eleq12d 2300 |
. . . . . . . 8
|
| 14 | simpr 110 |
. . . . . . . . 9
| |
| 15 | elnn 4698 |
. . . . . . . . . . 11
| |
| 16 | 15 | ancoms 268 |
. . . . . . . . . 10
|
| 17 | nna0 6620 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | syl 14 |
. . . . . . . . 9
|
| 19 | nna0 6620 |
. . . . . . . . . 10
| |
| 20 | 19 | adantr 276 |
. . . . . . . . 9
|
| 21 | 14, 18, 20 | 3eltr4d 2313 |
. . . . . . . 8
|
| 22 | simprl 529 |
. . . . . . . . . . . . 13
| |
| 23 | simpl 109 |
. . . . . . . . . . . . 13
| |
| 24 | nnacl 6626 |
. . . . . . . . . . . . 13
| |
| 25 | 22, 23, 24 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 26 | nnsucelsuc 6637 |
. . . . . . . . . . . 12
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . . . . 11
|
| 28 | 16 | adantl 277 |
. . . . . . . . . . . . . 14
|
| 29 | nnon 4702 |
. . . . . . . . . . . . . 14
| |
| 30 | 28, 29 | syl 14 |
. . . . . . . . . . . . 13
|
| 31 | nnon 4702 |
. . . . . . . . . . . . . 14
| |
| 32 | 31 | adantr 276 |
. . . . . . . . . . . . 13
|
| 33 | oasuc 6610 |
. . . . . . . . . . . . 13
| |
| 34 | 30, 32, 33 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 35 | nnon 4702 |
. . . . . . . . . . . . . 14
| |
| 36 | 35 | ad2antrl 490 |
. . . . . . . . . . . . 13
|
| 37 | oasuc 6610 |
. . . . . . . . . . . . 13
| |
| 38 | 36, 32, 37 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 39 | 34, 38 | eleq12d 2300 |
. . . . . . . . . . 11
|
| 40 | 27, 39 | bitr4d 191 |
. . . . . . . . . 10
|
| 41 | 40 | biimpd 144 |
. . . . . . . . 9
|
| 42 | 41 | ex 115 |
. . . . . . . 8
|
| 43 | 7, 10, 13, 21, 42 | finds2 4693 |
. . . . . . 7
|
| 44 | 4, 43 | vtoclga 2867 |
. . . . . 6
|
| 45 | 44 | imp 124 |
. . . . 5
|
| 46 | 16 | adantl 277 |
. . . . . 6
|
| 47 | simpl 109 |
. . . . . 6
| |
| 48 | nnacom 6630 |
. . . . . 6
| |
| 49 | 46, 47, 48 | syl2anc 411 |
. . . . 5
|
| 50 | nnacom 6630 |
. . . . . . 7
| |
| 51 | 50 | ancoms 268 |
. . . . . 6
|
| 52 | 51 | adantrr 479 |
. . . . 5
|
| 53 | 45, 49, 52 | 3eltr3d 2312 |
. . . 4
|
| 54 | 53 | 3impb 1223 |
. . 3
|
| 55 | 54 | 3com12 1231 |
. 2
|
| 56 | 55 | 3expia 1229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-oadd 6566 |
| This theorem is referenced by: nnaord 6655 nnmordi 6662 addclpi 7514 addnidpig 7523 archnqq 7604 prarloclemarch2 7606 prarloclemlt 7680 |
| Copyright terms: Public domain | W3C validator |