ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaordi Unicode version

Theorem nnaordi 6370
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordi  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )

Proof of Theorem nnaordi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5748 . . . . . . . . 9  |-  ( x  =  C  ->  ( A  +o  x )  =  ( A  +o  C
) )
2 oveq2 5748 . . . . . . . . 9  |-  ( x  =  C  ->  ( B  +o  x )  =  ( B  +o  C
) )
31, 2eleq12d 2186 . . . . . . . 8  |-  ( x  =  C  ->  (
( A  +o  x
)  e.  ( B  +o  x )  <->  ( A  +o  C )  e.  ( B  +o  C ) ) )
43imbi2d 229 . . . . . . 7  |-  ( x  =  C  ->  (
( ( B  e. 
om  /\  A  e.  B )  ->  ( A  +o  x )  e.  ( B  +o  x
) )  <->  ( ( B  e.  om  /\  A  e.  B )  ->  ( A  +o  C )  e.  ( B  +o  C
) ) ) )
5 oveq2 5748 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( A  +o  x )  =  ( A  +o  (/) ) )
6 oveq2 5748 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
75, 6eleq12d 2186 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( A  +o  x )  e.  ( B  +o  x )  <->  ( A  +o  (/) )  e.  ( B  +o  (/) ) ) )
8 oveq2 5748 . . . . . . . . 9  |-  ( x  =  y  ->  ( A  +o  x )  =  ( A  +o  y
) )
9 oveq2 5748 . . . . . . . . 9  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
108, 9eleq12d 2186 . . . . . . . 8  |-  ( x  =  y  ->  (
( A  +o  x
)  e.  ( B  +o  x )  <->  ( A  +o  y )  e.  ( B  +o  y ) ) )
11 oveq2 5748 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( A  +o  x
)  =  ( A  +o  suc  y ) )
12 oveq2 5748 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1311, 12eleq12d 2186 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ( A  +o  x )  e.  ( B  +o  x )  <-> 
( A  +o  suc  y )  e.  ( B  +o  suc  y
) ) )
14 simpr 109 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  B )  ->  A  e.  B )
15 elnn 4487 . . . . . . . . . . 11  |-  ( ( A  e.  B  /\  B  e.  om )  ->  A  e.  om )
1615ancoms 266 . . . . . . . . . 10  |-  ( ( B  e.  om  /\  A  e.  B )  ->  A  e.  om )
17 nna0 6336 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
1816, 17syl 14 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  B )  ->  ( A  +o  (/) )  =  A )
19 nna0 6336 . . . . . . . . . 10  |-  ( B  e.  om  ->  ( B  +o  (/) )  =  B )
2019adantr 272 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  B )  ->  ( B  +o  (/) )  =  B )
2114, 18, 203eltr4d 2199 . . . . . . . 8  |-  ( ( B  e.  om  /\  A  e.  B )  ->  ( A  +o  (/) )  e.  ( B  +o  (/) ) )
22 simprl 503 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  B  e.  om )
23 simpl 108 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  y  e.  om )
24 nnacl 6342 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  y
)  e.  om )
2522, 23, 24syl2anc 406 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( B  +o  y )  e.  om )
26 nnsucelsuc 6353 . . . . . . . . . . . 12  |-  ( ( B  +o  y )  e.  om  ->  (
( A  +o  y
)  e.  ( B  +o  y )  <->  suc  ( A  +o  y )  e. 
suc  ( B  +o  y ) ) )
2725, 26syl 14 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  <->  suc  ( A  +o  y )  e.  suc  ( B  +o  y
) ) )
2816adantl 273 . . . . . . . . . . . . . 14  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  A  e.  om )
29 nnon 4491 . . . . . . . . . . . . . 14  |-  ( A  e.  om  ->  A  e.  On )
3028, 29syl 14 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  A  e.  On )
31 nnon 4491 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  y  e.  On )
3231adantr 272 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  y  e.  On )
33 oasuc 6326 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
3430, 32, 33syl2anc 406 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y ) )
35 nnon 4491 . . . . . . . . . . . . . 14  |-  ( B  e.  om  ->  B  e.  On )
3635ad2antrl 479 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  B  e.  On )
37 oasuc 6326 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
3836, 32, 37syl2anc 406 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y ) )
3934, 38eleq12d 2186 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  suc  y )  e.  ( B  +o  suc  y )  <->  suc  ( A  +o  y )  e. 
suc  ( B  +o  y ) ) )
4027, 39bitr4d 190 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  <->  ( A  +o  suc  y )  e.  ( B  +o  suc  y
) ) )
4140biimpd 143 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  ->  ( A  +o  suc  y )  e.  ( B  +o  suc  y ) ) )
4241ex 114 . . . . . . . 8  |-  ( y  e.  om  ->  (
( B  e.  om  /\  A  e.  B )  ->  ( ( A  +o  y )  e.  ( B  +o  y
)  ->  ( A  +o  suc  y )  e.  ( B  +o  suc  y ) ) ) )
437, 10, 13, 21, 42finds2 4483 . . . . . . 7  |-  ( x  e.  om  ->  (
( B  e.  om  /\  A  e.  B )  ->  ( A  +o  x )  e.  ( B  +o  x ) ) )
444, 43vtoclga 2724 . . . . . 6  |-  ( C  e.  om  ->  (
( B  e.  om  /\  A  e.  B )  ->  ( A  +o  C )  e.  ( B  +o  C ) ) )
4544imp 123 . . . . 5  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( A  +o  C )  e.  ( B  +o  C ) )
4616adantl 273 . . . . . 6  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  A  e.  om )
47 simpl 108 . . . . . 6  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  C  e.  om )
48 nnacom 6346 . . . . . 6  |-  ( ( A  e.  om  /\  C  e.  om )  ->  ( A  +o  C
)  =  ( C  +o  A ) )
4946, 47, 48syl2anc 406 . . . . 5  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( A  +o  C )  =  ( C  +o  A ) )
50 nnacom 6346 . . . . . . 7  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( B  +o  C
)  =  ( C  +o  B ) )
5150ancoms 266 . . . . . 6  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( B  +o  C
)  =  ( C  +o  B ) )
5251adantrr 468 . . . . 5  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( B  +o  C )  =  ( C  +o  B ) )
5345, 49, 523eltr3d 2198 . . . 4  |-  ( ( C  e.  om  /\  ( B  e.  om  /\  A  e.  B ) )  ->  ( C  +o  A )  e.  ( C  +o  B ) )
54533impb 1160 . . 3  |-  ( ( C  e.  om  /\  B  e.  om  /\  A  e.  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
55543com12 1168 . 2  |-  ( ( B  e.  om  /\  C  e.  om  /\  A  e.  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
56553expia 1166 1  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463   (/)c0 3331   Oncon0 4253   suc csuc 4255   omcom 4472  (class class class)co 5740    +o coa 6276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-oadd 6283
This theorem is referenced by:  nnaord  6371  nnmordi  6378  addclpi  7099  addnidpig  7108  archnqq  7189  prarloclemarch2  7191  prarloclemlt  7265
  Copyright terms: Public domain W3C validator