| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lincmb01cmp | Unicode version | ||
| Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.) |
| Ref | Expression |
|---|---|
| lincmb01cmp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . 5
| |
| 2 | 0re 8107 |
. . . . . . 7
| |
| 3 | 2 | a1i 9 |
. . . . . 6
|
| 4 | 1re 8106 |
. . . . . . 7
| |
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | 2, 4 | elicc2i 10096 |
. . . . . . . 8
|
| 7 | 6 | simp1bi 1015 |
. . . . . . 7
|
| 8 | 7 | adantl 277 |
. . . . . 6
|
| 9 | difrp 9849 |
. . . . . . . 8
| |
| 10 | 9 | biimp3a 1358 |
. . . . . . 7
|
| 11 | 10 | adantr 276 |
. . . . . 6
|
| 12 | eqid 2207 |
. . . . . . 7
| |
| 13 | eqid 2207 |
. . . . . . 7
| |
| 14 | 12, 13 | iccdil 10155 |
. . . . . 6
|
| 15 | 3, 5, 8, 11, 14 | syl22anc 1251 |
. . . . 5
|
| 16 | 1, 15 | mpbid 147 |
. . . 4
|
| 17 | simpl2 1004 |
. . . . . . . 8
| |
| 18 | simpl1 1003 |
. . . . . . . 8
| |
| 19 | 17, 18 | resubcld 8488 |
. . . . . . 7
|
| 20 | 19 | recnd 8136 |
. . . . . 6
|
| 21 | 20 | mul02d 8499 |
. . . . 5
|
| 22 | 20 | mulid2d 8126 |
. . . . 5
|
| 23 | 21, 22 | oveq12d 5985 |
. . . 4
|
| 24 | 16, 23 | eleqtrd 2286 |
. . 3
|
| 25 | 8, 19 | remulcld 8138 |
. . . 4
|
| 26 | eqid 2207 |
. . . . 5
| |
| 27 | eqid 2207 |
. . . . 5
| |
| 28 | 26, 27 | iccshftr 10151 |
. . . 4
|
| 29 | 3, 19, 25, 18, 28 | syl22anc 1251 |
. . 3
|
| 30 | 24, 29 | mpbid 147 |
. 2
|
| 31 | 8 | recnd 8136 |
. . . . 5
|
| 32 | 17 | recnd 8136 |
. . . . 5
|
| 33 | 31, 32 | mulcld 8128 |
. . . 4
|
| 34 | 18 | recnd 8136 |
. . . . 5
|
| 35 | 31, 34 | mulcld 8128 |
. . . 4
|
| 36 | 33, 35, 34 | subadd23d 8440 |
. . 3
|
| 37 | 31, 32, 34 | subdid 8521 |
. . . 4
|
| 38 | 37 | oveq1d 5982 |
. . 3
|
| 39 | resubcl 8371 |
. . . . . . . 8
| |
| 40 | 4, 8, 39 | sylancr 414 |
. . . . . . 7
|
| 41 | 40, 18 | remulcld 8138 |
. . . . . 6
|
| 42 | 41 | recnd 8136 |
. . . . 5
|
| 43 | 42, 33 | addcomd 8258 |
. . . 4
|
| 44 | 1cnd 8123 |
. . . . . . 7
| |
| 45 | 44, 31, 34 | subdird 8522 |
. . . . . 6
|
| 46 | 34 | mulid2d 8126 |
. . . . . . 7
|
| 47 | 46 | oveq1d 5982 |
. . . . . 6
|
| 48 | 45, 47 | eqtrd 2240 |
. . . . 5
|
| 49 | 48 | oveq2d 5983 |
. . . 4
|
| 50 | 43, 49 | eqtrd 2240 |
. . 3
|
| 51 | 36, 38, 50 | 3eqtr4d 2250 |
. 2
|
| 52 | 34 | addlidd 8257 |
. . 3
|
| 53 | 32, 34 | npcand 8422 |
. . 3
|
| 54 | 52, 53 | oveq12d 5985 |
. 2
|
| 55 | 30, 51, 54 | 3eltr3d 2290 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-rp 9811 df-icc 10052 |
| This theorem is referenced by: iccf1o 10161 |
| Copyright terms: Public domain | W3C validator |