| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lincmb01cmp | Unicode version | ||
| Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.) |
| Ref | Expression |
|---|---|
| lincmb01cmp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . 5
| |
| 2 | 0re 8072 |
. . . . . . 7
| |
| 3 | 2 | a1i 9 |
. . . . . 6
|
| 4 | 1re 8071 |
. . . . . . 7
| |
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | 2, 4 | elicc2i 10061 |
. . . . . . . 8
|
| 7 | 6 | simp1bi 1015 |
. . . . . . 7
|
| 8 | 7 | adantl 277 |
. . . . . 6
|
| 9 | difrp 9814 |
. . . . . . . 8
| |
| 10 | 9 | biimp3a 1358 |
. . . . . . 7
|
| 11 | 10 | adantr 276 |
. . . . . 6
|
| 12 | eqid 2205 |
. . . . . . 7
| |
| 13 | eqid 2205 |
. . . . . . 7
| |
| 14 | 12, 13 | iccdil 10120 |
. . . . . 6
|
| 15 | 3, 5, 8, 11, 14 | syl22anc 1251 |
. . . . 5
|
| 16 | 1, 15 | mpbid 147 |
. . . 4
|
| 17 | simpl2 1004 |
. . . . . . . 8
| |
| 18 | simpl1 1003 |
. . . . . . . 8
| |
| 19 | 17, 18 | resubcld 8453 |
. . . . . . 7
|
| 20 | 19 | recnd 8101 |
. . . . . 6
|
| 21 | 20 | mul02d 8464 |
. . . . 5
|
| 22 | 20 | mulid2d 8091 |
. . . . 5
|
| 23 | 21, 22 | oveq12d 5962 |
. . . 4
|
| 24 | 16, 23 | eleqtrd 2284 |
. . 3
|
| 25 | 8, 19 | remulcld 8103 |
. . . 4
|
| 26 | eqid 2205 |
. . . . 5
| |
| 27 | eqid 2205 |
. . . . 5
| |
| 28 | 26, 27 | iccshftr 10116 |
. . . 4
|
| 29 | 3, 19, 25, 18, 28 | syl22anc 1251 |
. . 3
|
| 30 | 24, 29 | mpbid 147 |
. 2
|
| 31 | 8 | recnd 8101 |
. . . . 5
|
| 32 | 17 | recnd 8101 |
. . . . 5
|
| 33 | 31, 32 | mulcld 8093 |
. . . 4
|
| 34 | 18 | recnd 8101 |
. . . . 5
|
| 35 | 31, 34 | mulcld 8093 |
. . . 4
|
| 36 | 33, 35, 34 | subadd23d 8405 |
. . 3
|
| 37 | 31, 32, 34 | subdid 8486 |
. . . 4
|
| 38 | 37 | oveq1d 5959 |
. . 3
|
| 39 | resubcl 8336 |
. . . . . . . 8
| |
| 40 | 4, 8, 39 | sylancr 414 |
. . . . . . 7
|
| 41 | 40, 18 | remulcld 8103 |
. . . . . 6
|
| 42 | 41 | recnd 8101 |
. . . . 5
|
| 43 | 42, 33 | addcomd 8223 |
. . . 4
|
| 44 | 1cnd 8088 |
. . . . . . 7
| |
| 45 | 44, 31, 34 | subdird 8487 |
. . . . . 6
|
| 46 | 34 | mulid2d 8091 |
. . . . . . 7
|
| 47 | 46 | oveq1d 5959 |
. . . . . 6
|
| 48 | 45, 47 | eqtrd 2238 |
. . . . 5
|
| 49 | 48 | oveq2d 5960 |
. . . 4
|
| 50 | 43, 49 | eqtrd 2238 |
. . 3
|
| 51 | 36, 38, 50 | 3eqtr4d 2248 |
. 2
|
| 52 | 34 | addlidd 8222 |
. . 3
|
| 53 | 32, 34 | npcand 8387 |
. . 3
|
| 54 | 52, 53 | oveq12d 5962 |
. 2
|
| 55 | 30, 51, 54 | 3eltr3d 2288 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-rp 9776 df-icc 10017 |
| This theorem is referenced by: iccf1o 10126 |
| Copyright terms: Public domain | W3C validator |