Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lincmb01cmp | Unicode version |
Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.) |
Ref | Expression |
---|---|
lincmb01cmp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 | |
2 | 0re 7899 | . . . . . . 7 | |
3 | 2 | a1i 9 | . . . . . 6 |
4 | 1re 7898 | . . . . . . 7 | |
5 | 4 | a1i 9 | . . . . . 6 |
6 | 2, 4 | elicc2i 9875 | . . . . . . . 8 |
7 | 6 | simp1bi 1002 | . . . . . . 7 |
8 | 7 | adantl 275 | . . . . . 6 |
9 | difrp 9628 | . . . . . . . 8 | |
10 | 9 | biimp3a 1335 | . . . . . . 7 |
11 | 10 | adantr 274 | . . . . . 6 |
12 | eqid 2165 | . . . . . . 7 | |
13 | eqid 2165 | . . . . . . 7 | |
14 | 12, 13 | iccdil 9934 | . . . . . 6 |
15 | 3, 5, 8, 11, 14 | syl22anc 1229 | . . . . 5 |
16 | 1, 15 | mpbid 146 | . . . 4 |
17 | simpl2 991 | . . . . . . . 8 | |
18 | simpl1 990 | . . . . . . . 8 | |
19 | 17, 18 | resubcld 8279 | . . . . . . 7 |
20 | 19 | recnd 7927 | . . . . . 6 |
21 | 20 | mul02d 8290 | . . . . 5 |
22 | 20 | mulid2d 7917 | . . . . 5 |
23 | 21, 22 | oveq12d 5860 | . . . 4 |
24 | 16, 23 | eleqtrd 2245 | . . 3 |
25 | 8, 19 | remulcld 7929 | . . . 4 |
26 | eqid 2165 | . . . . 5 | |
27 | eqid 2165 | . . . . 5 | |
28 | 26, 27 | iccshftr 9930 | . . . 4 |
29 | 3, 19, 25, 18, 28 | syl22anc 1229 | . . 3 |
30 | 24, 29 | mpbid 146 | . 2 |
31 | 8 | recnd 7927 | . . . . 5 |
32 | 17 | recnd 7927 | . . . . 5 |
33 | 31, 32 | mulcld 7919 | . . . 4 |
34 | 18 | recnd 7927 | . . . . 5 |
35 | 31, 34 | mulcld 7919 | . . . 4 |
36 | 33, 35, 34 | subadd23d 8231 | . . 3 |
37 | 31, 32, 34 | subdid 8312 | . . . 4 |
38 | 37 | oveq1d 5857 | . . 3 |
39 | resubcl 8162 | . . . . . . . 8 | |
40 | 4, 8, 39 | sylancr 411 | . . . . . . 7 |
41 | 40, 18 | remulcld 7929 | . . . . . 6 |
42 | 41 | recnd 7927 | . . . . 5 |
43 | 42, 33 | addcomd 8049 | . . . 4 |
44 | 1cnd 7915 | . . . . . . 7 | |
45 | 44, 31, 34 | subdird 8313 | . . . . . 6 |
46 | 34 | mulid2d 7917 | . . . . . . 7 |
47 | 46 | oveq1d 5857 | . . . . . 6 |
48 | 45, 47 | eqtrd 2198 | . . . . 5 |
49 | 48 | oveq2d 5858 | . . . 4 |
50 | 43, 49 | eqtrd 2198 | . . 3 |
51 | 36, 38, 50 | 3eqtr4d 2208 | . 2 |
52 | 34 | addid2d 8048 | . . 3 |
53 | 32, 34 | npcand 8213 | . . 3 |
54 | 52, 53 | oveq12d 5860 | . 2 |
55 | 30, 51, 54 | 3eltr3d 2249 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 cc0 7753 c1 7754 caddc 7756 cmul 7758 clt 7933 cle 7934 cmin 8069 crp 9589 cicc 9827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-rp 9590 df-icc 9831 |
This theorem is referenced by: iccf1o 9940 |
Copyright terms: Public domain | W3C validator |