ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lincmb01cmp Unicode version

Theorem lincmb01cmp 9990
Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.)
Assertion
Ref Expression
lincmb01cmp  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  A )  +  ( T  x.  B
) )  e.  ( A [,] B ) )

Proof of Theorem lincmb01cmp
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  T  e.  ( 0 [,] 1 ) )
2 0re 7948 . . . . . . 7  |-  0  e.  RR
32a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  0  e.  RR )
4 1re 7947 . . . . . . 7  |-  1  e.  RR
54a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  1  e.  RR )
62, 4elicc2i 9926 . . . . . . . 8  |-  ( T  e.  ( 0 [,] 1 )  <->  ( T  e.  RR  /\  0  <_  T  /\  T  <_  1
) )
76simp1bi 1012 . . . . . . 7  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  RR )
87adantl 277 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  T  e.  RR )
9 difrp 9679 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( B  -  A )  e.  RR+ ) )
109biimp3a 1345 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR+ )
1110adantr 276 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( B  -  A )  e.  RR+ )
12 eqid 2177 . . . . . . 7  |-  ( 0  x.  ( B  -  A ) )  =  ( 0  x.  ( B  -  A )
)
13 eqid 2177 . . . . . . 7  |-  ( 1  x.  ( B  -  A ) )  =  ( 1  x.  ( B  -  A )
)
1412, 13iccdil 9985 . . . . . 6  |-  ( ( ( 0  e.  RR  /\  1  e.  RR )  /\  ( T  e.  RR  /\  ( B  -  A )  e.  RR+ ) )  ->  ( T  e.  ( 0 [,] 1 )  <->  ( T  x.  ( B  -  A
) )  e.  ( ( 0  x.  ( B  -  A )
) [,] ( 1  x.  ( B  -  A ) ) ) ) )
153, 5, 8, 11, 14syl22anc 1239 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  e.  ( 0 [,] 1
)  <->  ( T  x.  ( B  -  A
) )  e.  ( ( 0  x.  ( B  -  A )
) [,] ( 1  x.  ( B  -  A ) ) ) ) )
161, 15mpbid 147 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  ( B  -  A
) )  e.  ( ( 0  x.  ( B  -  A )
) [,] ( 1  x.  ( B  -  A ) ) ) )
17 simpl2 1001 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  B  e.  RR )
18 simpl1 1000 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  A  e.  RR )
1917, 18resubcld 8328 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( B  -  A )  e.  RR )
2019recnd 7976 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( B  -  A )  e.  CC )
2120mul02d 8339 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( 0  x.  ( B  -  A
) )  =  0 )
2220mulid2d 7966 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  ( B  -  A
) )  =  ( B  -  A ) )
2321, 22oveq12d 5887 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 0  x.  ( B  -  A ) ) [,] ( 1  x.  ( B  -  A )
) )  =  ( 0 [,] ( B  -  A ) ) )
2416, 23eleqtrd 2256 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  ( B  -  A
) )  e.  ( 0 [,] ( B  -  A ) ) )
258, 19remulcld 7978 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  ( B  -  A
) )  e.  RR )
26 eqid 2177 . . . . 5  |-  ( 0  +  A )  =  ( 0  +  A
)
27 eqid 2177 . . . . 5  |-  ( ( B  -  A )  +  A )  =  ( ( B  -  A )  +  A
)
2826, 27iccshftr 9981 . . . 4  |-  ( ( ( 0  e.  RR  /\  ( B  -  A
)  e.  RR )  /\  ( ( T  x.  ( B  -  A ) )  e.  RR  /\  A  e.  RR ) )  -> 
( ( T  x.  ( B  -  A
) )  e.  ( 0 [,] ( B  -  A ) )  <-> 
( ( T  x.  ( B  -  A
) )  +  A
)  e.  ( ( 0  +  A ) [,] ( ( B  -  A )  +  A ) ) ) )
293, 19, 25, 18, 28syl22anc 1239 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  ( B  -  A ) )  e.  ( 0 [,] ( B  -  A )
)  <->  ( ( T  x.  ( B  -  A ) )  +  A )  e.  ( ( 0  +  A
) [,] ( ( B  -  A )  +  A ) ) ) )
3024, 29mpbid 147 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  ( B  -  A ) )  +  A )  e.  ( ( 0  +  A
) [,] ( ( B  -  A )  +  A ) ) )
318recnd 7976 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  T  e.  CC )
3217recnd 7976 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  B  e.  CC )
3331, 32mulcld 7968 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  B )  e.  CC )
3418recnd 7976 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  A  e.  CC )
3531, 34mulcld 7968 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  A )  e.  CC )
3633, 35, 34subadd23d 8280 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( T  x.  B )  -  ( T  x.  A ) )  +  A )  =  ( ( T  x.  B
)  +  ( A  -  ( T  x.  A ) ) ) )
3731, 32, 34subdid 8361 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  ( B  -  A
) )  =  ( ( T  x.  B
)  -  ( T  x.  A ) ) )
3837oveq1d 5884 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  ( B  -  A ) )  +  A )  =  ( ( ( T  x.  B )  -  ( T  x.  A )
)  +  A ) )
39 resubcl 8211 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 1  -  T
)  e.  RR )
404, 8, 39sylancr 414 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( 1  -  T )  e.  RR )
4140, 18remulcld 7978 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  T )  x.  A )  e.  RR )
4241recnd 7976 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  T )  x.  A )  e.  CC )
4342, 33addcomd 8098 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  A )  +  ( T  x.  B
) )  =  ( ( T  x.  B
)  +  ( ( 1  -  T )  x.  A ) ) )
44 1cnd 7964 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  1  e.  CC )
4544, 31, 34subdird 8362 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  T )  x.  A )  =  ( ( 1  x.  A
)  -  ( T  x.  A ) ) )
4634mulid2d 7966 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  A )  =  A )
4746oveq1d 5884 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  x.  A )  -  ( T  x.  A
) )  =  ( A  -  ( T  x.  A ) ) )
4845, 47eqtrd 2210 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  T )  x.  A )  =  ( A  -  ( T  x.  A ) ) )
4948oveq2d 5885 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  B )  +  ( ( 1  -  T )  x.  A
) )  =  ( ( T  x.  B
)  +  ( A  -  ( T  x.  A ) ) ) )
5043, 49eqtrd 2210 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  A )  +  ( T  x.  B
) )  =  ( ( T  x.  B
)  +  ( A  -  ( T  x.  A ) ) ) )
5136, 38, 503eqtr4d 2220 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  ( B  -  A ) )  +  A )  =  ( ( ( 1  -  T )  x.  A
)  +  ( T  x.  B ) ) )
5234addid2d 8097 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( 0  +  A )  =  A )
5332, 34npcand 8262 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( B  -  A )  +  A )  =  B )
5452, 53oveq12d 5887 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 0  +  A ) [,] ( ( B  -  A )  +  A
) )  =  ( A [,] B ) )
5530, 51, 543eltr3d 2260 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  A )  +  ( T  x.  B
) )  e.  ( A [,] B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2148   class class class wbr 4000  (class class class)co 5869   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    < clt 7982    <_ cle 7983    - cmin 8118   RR+crp 9640   [,]cicc 9878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918  ax-pre-mulgt0 7919
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-rp 9641  df-icc 9882
This theorem is referenced by:  iccf1o  9991
  Copyright terms: Public domain W3C validator