| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lincmb01cmp | Unicode version | ||
| Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.) |
| Ref | Expression |
|---|---|
| lincmb01cmp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . 5
| |
| 2 | 0re 8146 |
. . . . . . 7
| |
| 3 | 2 | a1i 9 |
. . . . . 6
|
| 4 | 1re 8145 |
. . . . . . 7
| |
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | 2, 4 | elicc2i 10135 |
. . . . . . . 8
|
| 7 | 6 | simp1bi 1036 |
. . . . . . 7
|
| 8 | 7 | adantl 277 |
. . . . . 6
|
| 9 | difrp 9888 |
. . . . . . . 8
| |
| 10 | 9 | biimp3a 1379 |
. . . . . . 7
|
| 11 | 10 | adantr 276 |
. . . . . 6
|
| 12 | eqid 2229 |
. . . . . . 7
| |
| 13 | eqid 2229 |
. . . . . . 7
| |
| 14 | 12, 13 | iccdil 10194 |
. . . . . 6
|
| 15 | 3, 5, 8, 11, 14 | syl22anc 1272 |
. . . . 5
|
| 16 | 1, 15 | mpbid 147 |
. . . 4
|
| 17 | simpl2 1025 |
. . . . . . . 8
| |
| 18 | simpl1 1024 |
. . . . . . . 8
| |
| 19 | 17, 18 | resubcld 8527 |
. . . . . . 7
|
| 20 | 19 | recnd 8175 |
. . . . . 6
|
| 21 | 20 | mul02d 8538 |
. . . . 5
|
| 22 | 20 | mulid2d 8165 |
. . . . 5
|
| 23 | 21, 22 | oveq12d 6019 |
. . . 4
|
| 24 | 16, 23 | eleqtrd 2308 |
. . 3
|
| 25 | 8, 19 | remulcld 8177 |
. . . 4
|
| 26 | eqid 2229 |
. . . . 5
| |
| 27 | eqid 2229 |
. . . . 5
| |
| 28 | 26, 27 | iccshftr 10190 |
. . . 4
|
| 29 | 3, 19, 25, 18, 28 | syl22anc 1272 |
. . 3
|
| 30 | 24, 29 | mpbid 147 |
. 2
|
| 31 | 8 | recnd 8175 |
. . . . 5
|
| 32 | 17 | recnd 8175 |
. . . . 5
|
| 33 | 31, 32 | mulcld 8167 |
. . . 4
|
| 34 | 18 | recnd 8175 |
. . . . 5
|
| 35 | 31, 34 | mulcld 8167 |
. . . 4
|
| 36 | 33, 35, 34 | subadd23d 8479 |
. . 3
|
| 37 | 31, 32, 34 | subdid 8560 |
. . . 4
|
| 38 | 37 | oveq1d 6016 |
. . 3
|
| 39 | resubcl 8410 |
. . . . . . . 8
| |
| 40 | 4, 8, 39 | sylancr 414 |
. . . . . . 7
|
| 41 | 40, 18 | remulcld 8177 |
. . . . . 6
|
| 42 | 41 | recnd 8175 |
. . . . 5
|
| 43 | 42, 33 | addcomd 8297 |
. . . 4
|
| 44 | 1cnd 8162 |
. . . . . . 7
| |
| 45 | 44, 31, 34 | subdird 8561 |
. . . . . 6
|
| 46 | 34 | mulid2d 8165 |
. . . . . . 7
|
| 47 | 46 | oveq1d 6016 |
. . . . . 6
|
| 48 | 45, 47 | eqtrd 2262 |
. . . . 5
|
| 49 | 48 | oveq2d 6017 |
. . . 4
|
| 50 | 43, 49 | eqtrd 2262 |
. . 3
|
| 51 | 36, 38, 50 | 3eqtr4d 2272 |
. 2
|
| 52 | 34 | addlidd 8296 |
. . 3
|
| 53 | 32, 34 | npcand 8461 |
. . 3
|
| 54 | 52, 53 | oveq12d 6019 |
. 2
|
| 55 | 30, 51, 54 | 3eltr3d 2312 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-rp 9850 df-icc 10091 |
| This theorem is referenced by: iccf1o 10200 |
| Copyright terms: Public domain | W3C validator |