| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lincmb01cmp | Unicode version | ||
| Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.) |
| Ref | Expression |
|---|---|
| lincmb01cmp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . 5
| |
| 2 | 0re 8043 |
. . . . . . 7
| |
| 3 | 2 | a1i 9 |
. . . . . 6
|
| 4 | 1re 8042 |
. . . . . . 7
| |
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | 2, 4 | elicc2i 10031 |
. . . . . . . 8
|
| 7 | 6 | simp1bi 1014 |
. . . . . . 7
|
| 8 | 7 | adantl 277 |
. . . . . 6
|
| 9 | difrp 9784 |
. . . . . . . 8
| |
| 10 | 9 | biimp3a 1356 |
. . . . . . 7
|
| 11 | 10 | adantr 276 |
. . . . . 6
|
| 12 | eqid 2196 |
. . . . . . 7
| |
| 13 | eqid 2196 |
. . . . . . 7
| |
| 14 | 12, 13 | iccdil 10090 |
. . . . . 6
|
| 15 | 3, 5, 8, 11, 14 | syl22anc 1250 |
. . . . 5
|
| 16 | 1, 15 | mpbid 147 |
. . . 4
|
| 17 | simpl2 1003 |
. . . . . . . 8
| |
| 18 | simpl1 1002 |
. . . . . . . 8
| |
| 19 | 17, 18 | resubcld 8424 |
. . . . . . 7
|
| 20 | 19 | recnd 8072 |
. . . . . 6
|
| 21 | 20 | mul02d 8435 |
. . . . 5
|
| 22 | 20 | mulid2d 8062 |
. . . . 5
|
| 23 | 21, 22 | oveq12d 5943 |
. . . 4
|
| 24 | 16, 23 | eleqtrd 2275 |
. . 3
|
| 25 | 8, 19 | remulcld 8074 |
. . . 4
|
| 26 | eqid 2196 |
. . . . 5
| |
| 27 | eqid 2196 |
. . . . 5
| |
| 28 | 26, 27 | iccshftr 10086 |
. . . 4
|
| 29 | 3, 19, 25, 18, 28 | syl22anc 1250 |
. . 3
|
| 30 | 24, 29 | mpbid 147 |
. 2
|
| 31 | 8 | recnd 8072 |
. . . . 5
|
| 32 | 17 | recnd 8072 |
. . . . 5
|
| 33 | 31, 32 | mulcld 8064 |
. . . 4
|
| 34 | 18 | recnd 8072 |
. . . . 5
|
| 35 | 31, 34 | mulcld 8064 |
. . . 4
|
| 36 | 33, 35, 34 | subadd23d 8376 |
. . 3
|
| 37 | 31, 32, 34 | subdid 8457 |
. . . 4
|
| 38 | 37 | oveq1d 5940 |
. . 3
|
| 39 | resubcl 8307 |
. . . . . . . 8
| |
| 40 | 4, 8, 39 | sylancr 414 |
. . . . . . 7
|
| 41 | 40, 18 | remulcld 8074 |
. . . . . 6
|
| 42 | 41 | recnd 8072 |
. . . . 5
|
| 43 | 42, 33 | addcomd 8194 |
. . . 4
|
| 44 | 1cnd 8059 |
. . . . . . 7
| |
| 45 | 44, 31, 34 | subdird 8458 |
. . . . . 6
|
| 46 | 34 | mulid2d 8062 |
. . . . . . 7
|
| 47 | 46 | oveq1d 5940 |
. . . . . 6
|
| 48 | 45, 47 | eqtrd 2229 |
. . . . 5
|
| 49 | 48 | oveq2d 5941 |
. . . 4
|
| 50 | 43, 49 | eqtrd 2229 |
. . 3
|
| 51 | 36, 38, 50 | 3eqtr4d 2239 |
. 2
|
| 52 | 34 | addlidd 8193 |
. . 3
|
| 53 | 32, 34 | npcand 8358 |
. . 3
|
| 54 | 52, 53 | oveq12d 5943 |
. 2
|
| 55 | 30, 51, 54 | 3eltr3d 2279 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-rp 9746 df-icc 9987 |
| This theorem is referenced by: iccf1o 10096 |
| Copyright terms: Public domain | W3C validator |