ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt2res Unicode version

Theorem cnmpt2res 13091
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypotheses
Ref Expression
cnmpt1res.2  |-  K  =  ( Jt  Y )
cnmpt1res.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt1res.5  |-  ( ph  ->  Y  C_  X )
cnmpt2res.7  |-  N  =  ( Mt  W )
cnmpt2res.8  |-  ( ph  ->  M  e.  (TopOn `  Z ) )
cnmpt2res.9  |-  ( ph  ->  W  C_  Z )
cnmpt2res.10  |-  ( ph  ->  ( x  e.  X ,  y  e.  Z  |->  A )  e.  ( ( J  tX  M
)  Cn  L ) )
Assertion
Ref Expression
cnmpt2res  |-  ( ph  ->  ( x  e.  Y ,  y  e.  W  |->  A )  e.  ( ( K  tX  N
)  Cn  L ) )
Distinct variable groups:    x, y, W   
x, X, y    x, Y, y    x, Z, y
Allowed substitution hints:    ph( x, y)    A( x, y)    J( x, y)    K( x, y)    L( x, y)    M( x, y)    N( x, y)

Proof of Theorem cnmpt2res
StepHypRef Expression
1 cnmpt2res.10 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  Z  |->  A )  e.  ( ( J  tX  M
)  Cn  L ) )
2 cnmpt1res.5 . . . . 5  |-  ( ph  ->  Y  C_  X )
3 cnmpt2res.9 . . . . 5  |-  ( ph  ->  W  C_  Z )
4 xpss12 4718 . . . . 5  |-  ( ( Y  C_  X  /\  W  C_  Z )  -> 
( Y  X.  W
)  C_  ( X  X.  Z ) )
52, 3, 4syl2anc 409 . . . 4  |-  ( ph  ->  ( Y  X.  W
)  C_  ( X  X.  Z ) )
6 cnmpt1res.3 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  X ) )
7 cnmpt2res.8 . . . . . 6  |-  ( ph  ->  M  e.  (TopOn `  Z ) )
8 txtopon 13056 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  (TopOn `  Z )
)  ->  ( J  tX  M )  e.  (TopOn `  ( X  X.  Z
) ) )
96, 7, 8syl2anc 409 . . . . 5  |-  ( ph  ->  ( J  tX  M
)  e.  (TopOn `  ( X  X.  Z
) ) )
10 toponuni 12807 . . . . 5  |-  ( ( J  tX  M )  e.  (TopOn `  ( X  X.  Z ) )  ->  ( X  X.  Z )  =  U. ( J  tX  M ) )
119, 10syl 14 . . . 4  |-  ( ph  ->  ( X  X.  Z
)  =  U. ( J  tX  M ) )
125, 11sseqtrd 3185 . . 3  |-  ( ph  ->  ( Y  X.  W
)  C_  U. ( J  tX  M ) )
13 eqid 2170 . . . 4  |-  U. ( J  tX  M )  = 
U. ( J  tX  M )
1413cnrest 13029 . . 3  |-  ( ( ( x  e.  X ,  y  e.  Z  |->  A )  e.  ( ( J  tX  M
)  Cn  L )  /\  ( Y  X.  W )  C_  U. ( J  tX  M ) )  ->  ( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  e.  ( ( ( J  tX  M )t  ( Y  X.  W ) )  Cn  L ) )
151, 12, 14syl2anc 409 . 2  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  e.  ( ( ( J  tX  M )t  ( Y  X.  W ) )  Cn  L ) )
16 resmpo 5951 . . 3  |-  ( ( Y  C_  X  /\  W  C_  Z )  -> 
( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  =  ( x  e.  Y , 
y  e.  W  |->  A ) )
172, 3, 16syl2anc 409 . 2  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  =  ( x  e.  Y , 
y  e.  W  |->  A ) )
18 topontop 12806 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
196, 18syl 14 . . . . 5  |-  ( ph  ->  J  e.  Top )
20 topontop 12806 . . . . . 6  |-  ( M  e.  (TopOn `  Z
)  ->  M  e.  Top )
217, 20syl 14 . . . . 5  |-  ( ph  ->  M  e.  Top )
22 toponmax 12817 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
236, 22syl 14 . . . . . 6  |-  ( ph  ->  X  e.  J )
2423, 2ssexd 4129 . . . . 5  |-  ( ph  ->  Y  e.  _V )
25 toponmax 12817 . . . . . . 7  |-  ( M  e.  (TopOn `  Z
)  ->  Z  e.  M )
267, 25syl 14 . . . . . 6  |-  ( ph  ->  Z  e.  M )
2726, 3ssexd 4129 . . . . 5  |-  ( ph  ->  W  e.  _V )
28 txrest 13070 . . . . 5  |-  ( ( ( J  e.  Top  /\  M  e.  Top )  /\  ( Y  e.  _V  /\  W  e.  _V )
)  ->  ( ( J  tX  M )t  ( Y  X.  W ) )  =  ( ( Jt  Y )  tX  ( Mt  W ) ) )
2919, 21, 24, 27, 28syl22anc 1234 . . . 4  |-  ( ph  ->  ( ( J  tX  M )t  ( Y  X.  W ) )  =  ( ( Jt  Y ) 
tX  ( Mt  W ) ) )
30 cnmpt1res.2 . . . . 5  |-  K  =  ( Jt  Y )
31 cnmpt2res.7 . . . . 5  |-  N  =  ( Mt  W )
3230, 31oveq12i 5865 . . . 4  |-  ( K 
tX  N )  =  ( ( Jt  Y ) 
tX  ( Mt  W ) )
3329, 32eqtr4di 2221 . . 3  |-  ( ph  ->  ( ( J  tX  M )t  ( Y  X.  W ) )  =  ( K  tX  N
) )
3433oveq1d 5868 . 2  |-  ( ph  ->  ( ( ( J 
tX  M )t  ( Y  X.  W ) )  Cn  L )  =  ( ( K  tX  N )  Cn  L
) )
3515, 17, 343eltr3d 2253 1  |-  ( ph  ->  ( x  e.  Y ,  y  e.  W  |->  A )  e.  ( ( K  tX  N
)  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730    C_ wss 3121   U.cuni 3796    X. cxp 4609    |` cres 4613   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   ↾t crest 12579   Topctop 12789  TopOnctopon 12802    Cn ccn 12979    tX ctx 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-rest 12581  df-topgen 12600  df-top 12790  df-topon 12803  df-bases 12835  df-cn 12982  df-tx 13047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator