Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnmpt2res | Unicode version |
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
Ref | Expression |
---|---|
cnmpt1res.2 | ↾t |
cnmpt1res.3 | TopOn |
cnmpt1res.5 | |
cnmpt2res.7 | ↾t |
cnmpt2res.8 | TopOn |
cnmpt2res.9 | |
cnmpt2res.10 |
Ref | Expression |
---|---|
cnmpt2res |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt2res.10 | . . 3 | |
2 | cnmpt1res.5 | . . . . 5 | |
3 | cnmpt2res.9 | . . . . 5 | |
4 | xpss12 4727 | . . . . 5 | |
5 | 2, 3, 4 | syl2anc 411 | . . . 4 |
6 | cnmpt1res.3 | . . . . . 6 TopOn | |
7 | cnmpt2res.8 | . . . . . 6 TopOn | |
8 | txtopon 13313 | . . . . . 6 TopOn TopOn TopOn | |
9 | 6, 7, 8 | syl2anc 411 | . . . . 5 TopOn |
10 | toponuni 13064 | . . . . 5 TopOn | |
11 | 9, 10 | syl 14 | . . . 4 |
12 | 5, 11 | sseqtrd 3191 | . . 3 |
13 | eqid 2175 | . . . 4 | |
14 | 13 | cnrest 13286 | . . 3 ↾t |
15 | 1, 12, 14 | syl2anc 411 | . 2 ↾t |
16 | resmpo 5963 | . . 3 | |
17 | 2, 3, 16 | syl2anc 411 | . 2 |
18 | topontop 13063 | . . . . . 6 TopOn | |
19 | 6, 18 | syl 14 | . . . . 5 |
20 | topontop 13063 | . . . . . 6 TopOn | |
21 | 7, 20 | syl 14 | . . . . 5 |
22 | toponmax 13074 | . . . . . . 7 TopOn | |
23 | 6, 22 | syl 14 | . . . . . 6 |
24 | 23, 2 | ssexd 4138 | . . . . 5 |
25 | toponmax 13074 | . . . . . . 7 TopOn | |
26 | 7, 25 | syl 14 | . . . . . 6 |
27 | 26, 3 | ssexd 4138 | . . . . 5 |
28 | txrest 13327 | . . . . 5 ↾t ↾t ↾t | |
29 | 19, 21, 24, 27, 28 | syl22anc 1239 | . . . 4 ↾t ↾t ↾t |
30 | cnmpt1res.2 | . . . . 5 ↾t | |
31 | cnmpt2res.7 | . . . . 5 ↾t | |
32 | 30, 31 | oveq12i 5877 | . . . 4 ↾t ↾t |
33 | 29, 32 | eqtr4di 2226 | . . 3 ↾t |
34 | 33 | oveq1d 5880 | . 2 ↾t |
35 | 15, 17, 34 | 3eltr3d 2258 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 cvv 2735 wss 3127 cuni 3805 cxp 4618 cres 4622 cfv 5208 (class class class)co 5865 cmpo 5867 ↾t crest 12608 ctop 13046 TopOnctopon 13059 ccn 13236 ctx 13303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-map 6640 df-rest 12610 df-topgen 12629 df-top 13047 df-topon 13060 df-bases 13092 df-cn 13239 df-tx 13304 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |