| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnmpt2res | Unicode version | ||
| Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
| Ref | Expression |
|---|---|
| cnmpt1res.2 |
|
| cnmpt1res.3 |
|
| cnmpt1res.5 |
|
| cnmpt2res.7 |
|
| cnmpt2res.8 |
|
| cnmpt2res.9 |
|
| cnmpt2res.10 |
|
| Ref | Expression |
|---|---|
| cnmpt2res |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt2res.10 |
. . 3
| |
| 2 | cnmpt1res.5 |
. . . . 5
| |
| 3 | cnmpt2res.9 |
. . . . 5
| |
| 4 | xpss12 4800 |
. . . . 5
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . 4
|
| 6 | cnmpt1res.3 |
. . . . . 6
| |
| 7 | cnmpt2res.8 |
. . . . . 6
| |
| 8 | txtopon 14849 |
. . . . . 6
| |
| 9 | 6, 7, 8 | syl2anc 411 |
. . . . 5
|
| 10 | toponuni 14602 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 5, 11 | sseqtrd 3239 |
. . 3
|
| 13 | eqid 2207 |
. . . 4
| |
| 14 | 13 | cnrest 14822 |
. . 3
|
| 15 | 1, 12, 14 | syl2anc 411 |
. 2
|
| 16 | resmpo 6066 |
. . 3
| |
| 17 | 2, 3, 16 | syl2anc 411 |
. 2
|
| 18 | topontop 14601 |
. . . . . 6
| |
| 19 | 6, 18 | syl 14 |
. . . . 5
|
| 20 | topontop 14601 |
. . . . . 6
| |
| 21 | 7, 20 | syl 14 |
. . . . 5
|
| 22 | toponmax 14612 |
. . . . . . 7
| |
| 23 | 6, 22 | syl 14 |
. . . . . 6
|
| 24 | 23, 2 | ssexd 4200 |
. . . . 5
|
| 25 | toponmax 14612 |
. . . . . . 7
| |
| 26 | 7, 25 | syl 14 |
. . . . . 6
|
| 27 | 26, 3 | ssexd 4200 |
. . . . 5
|
| 28 | txrest 14863 |
. . . . 5
| |
| 29 | 19, 21, 24, 27, 28 | syl22anc 1251 |
. . . 4
|
| 30 | cnmpt1res.2 |
. . . . 5
| |
| 31 | cnmpt2res.7 |
. . . . 5
| |
| 32 | 30, 31 | oveq12i 5979 |
. . . 4
|
| 33 | 29, 32 | eqtr4di 2258 |
. . 3
|
| 34 | 33 | oveq1d 5982 |
. 2
|
| 35 | 15, 17, 34 | 3eltr3d 2290 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-rest 13188 df-topgen 13207 df-top 14585 df-topon 14598 df-bases 14630 df-cn 14775 df-tx 14840 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |