Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnmpt2res | Unicode version |
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
Ref | Expression |
---|---|
cnmpt1res.2 | ↾t |
cnmpt1res.3 | TopOn |
cnmpt1res.5 | |
cnmpt2res.7 | ↾t |
cnmpt2res.8 | TopOn |
cnmpt2res.9 | |
cnmpt2res.10 |
Ref | Expression |
---|---|
cnmpt2res |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt2res.10 | . . 3 | |
2 | cnmpt1res.5 | . . . . 5 | |
3 | cnmpt2res.9 | . . . . 5 | |
4 | xpss12 4718 | . . . . 5 | |
5 | 2, 3, 4 | syl2anc 409 | . . . 4 |
6 | cnmpt1res.3 | . . . . . 6 TopOn | |
7 | cnmpt2res.8 | . . . . . 6 TopOn | |
8 | txtopon 13056 | . . . . . 6 TopOn TopOn TopOn | |
9 | 6, 7, 8 | syl2anc 409 | . . . . 5 TopOn |
10 | toponuni 12807 | . . . . 5 TopOn | |
11 | 9, 10 | syl 14 | . . . 4 |
12 | 5, 11 | sseqtrd 3185 | . . 3 |
13 | eqid 2170 | . . . 4 | |
14 | 13 | cnrest 13029 | . . 3 ↾t |
15 | 1, 12, 14 | syl2anc 409 | . 2 ↾t |
16 | resmpo 5951 | . . 3 | |
17 | 2, 3, 16 | syl2anc 409 | . 2 |
18 | topontop 12806 | . . . . . 6 TopOn | |
19 | 6, 18 | syl 14 | . . . . 5 |
20 | topontop 12806 | . . . . . 6 TopOn | |
21 | 7, 20 | syl 14 | . . . . 5 |
22 | toponmax 12817 | . . . . . . 7 TopOn | |
23 | 6, 22 | syl 14 | . . . . . 6 |
24 | 23, 2 | ssexd 4129 | . . . . 5 |
25 | toponmax 12817 | . . . . . . 7 TopOn | |
26 | 7, 25 | syl 14 | . . . . . 6 |
27 | 26, 3 | ssexd 4129 | . . . . 5 |
28 | txrest 13070 | . . . . 5 ↾t ↾t ↾t | |
29 | 19, 21, 24, 27, 28 | syl22anc 1234 | . . . 4 ↾t ↾t ↾t |
30 | cnmpt1res.2 | . . . . 5 ↾t | |
31 | cnmpt2res.7 | . . . . 5 ↾t | |
32 | 30, 31 | oveq12i 5865 | . . . 4 ↾t ↾t |
33 | 29, 32 | eqtr4di 2221 | . . 3 ↾t |
34 | 33 | oveq1d 5868 | . 2 ↾t |
35 | 15, 17, 34 | 3eltr3d 2253 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 cvv 2730 wss 3121 cuni 3796 cxp 4609 cres 4613 cfv 5198 (class class class)co 5853 cmpo 5855 ↾t crest 12579 ctop 12789 TopOnctopon 12802 ccn 12979 ctx 13046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-rest 12581 df-topgen 12600 df-top 12790 df-topon 12803 df-bases 12835 df-cn 12982 df-tx 13047 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |