ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt2res Unicode version

Theorem cnmpt2res 14884
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypotheses
Ref Expression
cnmpt1res.2  |-  K  =  ( Jt  Y )
cnmpt1res.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt1res.5  |-  ( ph  ->  Y  C_  X )
cnmpt2res.7  |-  N  =  ( Mt  W )
cnmpt2res.8  |-  ( ph  ->  M  e.  (TopOn `  Z ) )
cnmpt2res.9  |-  ( ph  ->  W  C_  Z )
cnmpt2res.10  |-  ( ph  ->  ( x  e.  X ,  y  e.  Z  |->  A )  e.  ( ( J  tX  M
)  Cn  L ) )
Assertion
Ref Expression
cnmpt2res  |-  ( ph  ->  ( x  e.  Y ,  y  e.  W  |->  A )  e.  ( ( K  tX  N
)  Cn  L ) )
Distinct variable groups:    x, y, W   
x, X, y    x, Y, y    x, Z, y
Allowed substitution hints:    ph( x, y)    A( x, y)    J( x, y)    K( x, y)    L( x, y)    M( x, y)    N( x, y)

Proof of Theorem cnmpt2res
StepHypRef Expression
1 cnmpt2res.10 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  Z  |->  A )  e.  ( ( J  tX  M
)  Cn  L ) )
2 cnmpt1res.5 . . . . 5  |-  ( ph  ->  Y  C_  X )
3 cnmpt2res.9 . . . . 5  |-  ( ph  ->  W  C_  Z )
4 xpss12 4800 . . . . 5  |-  ( ( Y  C_  X  /\  W  C_  Z )  -> 
( Y  X.  W
)  C_  ( X  X.  Z ) )
52, 3, 4syl2anc 411 . . . 4  |-  ( ph  ->  ( Y  X.  W
)  C_  ( X  X.  Z ) )
6 cnmpt1res.3 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  X ) )
7 cnmpt2res.8 . . . . . 6  |-  ( ph  ->  M  e.  (TopOn `  Z ) )
8 txtopon 14849 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  (TopOn `  Z )
)  ->  ( J  tX  M )  e.  (TopOn `  ( X  X.  Z
) ) )
96, 7, 8syl2anc 411 . . . . 5  |-  ( ph  ->  ( J  tX  M
)  e.  (TopOn `  ( X  X.  Z
) ) )
10 toponuni 14602 . . . . 5  |-  ( ( J  tX  M )  e.  (TopOn `  ( X  X.  Z ) )  ->  ( X  X.  Z )  =  U. ( J  tX  M ) )
119, 10syl 14 . . . 4  |-  ( ph  ->  ( X  X.  Z
)  =  U. ( J  tX  M ) )
125, 11sseqtrd 3239 . . 3  |-  ( ph  ->  ( Y  X.  W
)  C_  U. ( J  tX  M ) )
13 eqid 2207 . . . 4  |-  U. ( J  tX  M )  = 
U. ( J  tX  M )
1413cnrest 14822 . . 3  |-  ( ( ( x  e.  X ,  y  e.  Z  |->  A )  e.  ( ( J  tX  M
)  Cn  L )  /\  ( Y  X.  W )  C_  U. ( J  tX  M ) )  ->  ( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  e.  ( ( ( J  tX  M )t  ( Y  X.  W ) )  Cn  L ) )
151, 12, 14syl2anc 411 . 2  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  e.  ( ( ( J  tX  M )t  ( Y  X.  W ) )  Cn  L ) )
16 resmpo 6066 . . 3  |-  ( ( Y  C_  X  /\  W  C_  Z )  -> 
( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  =  ( x  e.  Y , 
y  e.  W  |->  A ) )
172, 3, 16syl2anc 411 . 2  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  =  ( x  e.  Y , 
y  e.  W  |->  A ) )
18 topontop 14601 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
196, 18syl 14 . . . . 5  |-  ( ph  ->  J  e.  Top )
20 topontop 14601 . . . . . 6  |-  ( M  e.  (TopOn `  Z
)  ->  M  e.  Top )
217, 20syl 14 . . . . 5  |-  ( ph  ->  M  e.  Top )
22 toponmax 14612 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
236, 22syl 14 . . . . . 6  |-  ( ph  ->  X  e.  J )
2423, 2ssexd 4200 . . . . 5  |-  ( ph  ->  Y  e.  _V )
25 toponmax 14612 . . . . . . 7  |-  ( M  e.  (TopOn `  Z
)  ->  Z  e.  M )
267, 25syl 14 . . . . . 6  |-  ( ph  ->  Z  e.  M )
2726, 3ssexd 4200 . . . . 5  |-  ( ph  ->  W  e.  _V )
28 txrest 14863 . . . . 5  |-  ( ( ( J  e.  Top  /\  M  e.  Top )  /\  ( Y  e.  _V  /\  W  e.  _V )
)  ->  ( ( J  tX  M )t  ( Y  X.  W ) )  =  ( ( Jt  Y )  tX  ( Mt  W ) ) )
2919, 21, 24, 27, 28syl22anc 1251 . . . 4  |-  ( ph  ->  ( ( J  tX  M )t  ( Y  X.  W ) )  =  ( ( Jt  Y ) 
tX  ( Mt  W ) ) )
30 cnmpt1res.2 . . . . 5  |-  K  =  ( Jt  Y )
31 cnmpt2res.7 . . . . 5  |-  N  =  ( Mt  W )
3230, 31oveq12i 5979 . . . 4  |-  ( K 
tX  N )  =  ( ( Jt  Y ) 
tX  ( Mt  W ) )
3329, 32eqtr4di 2258 . . 3  |-  ( ph  ->  ( ( J  tX  M )t  ( Y  X.  W ) )  =  ( K  tX  N
) )
3433oveq1d 5982 . 2  |-  ( ph  ->  ( ( ( J 
tX  M )t  ( Y  X.  W ) )  Cn  L )  =  ( ( K  tX  N )  Cn  L
) )
3515, 17, 343eltr3d 2290 1  |-  ( ph  ->  ( x  e.  Y ,  y  e.  W  |->  A )  e.  ( ( K  tX  N
)  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776    C_ wss 3174   U.cuni 3864    X. cxp 4691    |` cres 4695   ` cfv 5290  (class class class)co 5967    e. cmpo 5969   ↾t crest 13186   Topctop 14584  TopOnctopon 14597    Cn ccn 14772    tX ctx 14839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-rest 13188  df-topgen 13207  df-top 14585  df-topon 14598  df-bases 14630  df-cn 14775  df-tx 14840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator