| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrd | Unicode version | ||
| Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
| Ref | Expression |
|---|---|
| eleqtrd.1 |
|
| eleqtrd.2 |
|
| Ref | Expression |
|---|---|
| eleqtrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrd.1 |
. 2
| |
| 2 | eleqtrd.2 |
. . 3
| |
| 3 | 2 | eleq2d 2266 |
. 2
|
| 4 | 1, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: eleqtrrd 2276 3eltr3d 2279 eleqtrid 2285 eleqtrdi 2289 opth1 4270 0nelop 4282 tfisi 4624 nnpredlt 4661 iotam 5251 ercl 6612 erth 6647 ecelqsdm 6673 phpm 6935 exmidpweq 6979 cc2lem 7349 cc3 7351 suplocexprlemmu 7802 suplocexprlemloc 7805 lincmb01cmp 10095 fzopth 10153 fzoaddel2 10286 fzosubel2 10288 fzocatel 10292 zpnn0elfzo1 10301 fzoend 10315 peano2fzor 10325 monoord2 10595 ser3mono 10596 bcpasc 10875 zfz1isolemiso 10948 fisum0diag2 11629 isumsplit 11673 prodmodclem3 11757 prodmodclem2a 11758 nnmindc 12226 nnminle 12227 basmexd 12763 basm 12764 prdsbasfn 12983 prdsbasprj 12984 pwsplusgval 12997 pwsmulrval 12998 mgm1 13072 grpidd 13085 gsumress 13097 sgrppropd 13115 ismndd 13139 mndpropd 13142 issubmnd 13144 imasmnd 13155 grpidd2 13243 pwsinvg 13314 imasgrp 13317 submmulg 13372 subginvcl 13389 subgcl 13390 subgsub 13392 subgmulg 13394 1nsgtrivd 13425 quseccl0g 13437 kerf1ghm 13480 rngass 13571 rngcl 13576 rngpropd 13587 imasrng 13588 srgcl 13602 srgass 13603 srg1zr 13619 srgpcomp 13622 srgpcompp 13623 srgpcomppsc 13624 crngcom 13646 ringass 13648 ringidmlem 13654 ringidss 13661 ringpropd 13670 imasring 13696 qusring2 13698 mulgass3 13717 dvdsrd 13726 1unit 13739 unitmulcl 13745 dvrvald 13766 rdivmuldivd 13776 elrhmunit 13809 rhmunitinv 13810 lringuplu 13828 subrngmcl 13841 subrg1 13863 subrgmcl 13865 subrgdv 13870 subrgunit 13871 resrhm 13880 aprval 13914 aprirr 13915 aprsym 13916 aprcotr 13917 lmodprop2d 13980 lidlss 14108 lidl0cl 14115 lidlacl 14116 lidlnegcl 14117 rnglidlmsgrp 14129 2idllidld 14138 2idlridld 14139 2idlcpblrng 14155 qus1 14158 quscrng 14165 rspsn 14166 znf1o 14283 psrelbas 14304 iscnp4 14538 cnrest2r 14557 txbasval 14587 txlm 14599 xmetunirn 14678 xblss2ps 14724 blbas 14753 mopntopon 14763 isxms2 14772 metcnpi 14835 metcnpi2 14836 tgioo 14874 cncfmpt2fcntop 14919 limccl 14979 limcimolemlt 14984 limccnp2cntop 14997 dvmulxxbr 15022 dvcoapbr 15027 dvcjbr 15028 dvrecap 15033 plyaddlem1 15067 plymullem1 15068 plycoeid3 15077 lgseisenlem4 15398 |
| Copyright terms: Public domain | W3C validator |