![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleqtrd | Unicode version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eleqtrd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eleqtrd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eleqtrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eleqtrd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | eleq2d 2257 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbid 147 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-4 1520 ax-17 1536 ax-ial 1544 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-cleq 2180 df-clel 2183 |
This theorem is referenced by: eleqtrrd 2267 3eltr3d 2270 eleqtrid 2276 eleqtrdi 2280 opth1 4248 0nelop 4260 tfisi 4598 nnpredlt 4635 iotam 5220 ercl 6560 erth 6593 ecelqsdm 6619 phpm 6879 exmidpweq 6923 cc2lem 7279 cc3 7281 suplocexprlemmu 7731 suplocexprlemloc 7734 lincmb01cmp 10017 fzopth 10075 fzoaddel2 10207 fzosubel2 10209 fzocatel 10213 zpnn0elfzo1 10222 fzoend 10236 peano2fzor 10246 monoord2 10491 ser3mono 10492 bcpasc 10760 zfz1isolemiso 10833 fisum0diag2 11469 isumsplit 11513 prodmodclem3 11597 prodmodclem2a 11598 nnmindc 12049 nnminle 12050 basmexd 12536 mgm1 12808 grpidd 12821 sgrppropd 12838 ismndd 12860 mndpropd 12863 issubmnd 12865 grpidd2 12938 imasgrp 13006 subginvcl 13075 subgcl 13076 subgsub 13078 subgmulg 13080 1nsgtrivd 13111 rngass 13191 rngcl 13196 rngpropd 13207 imasrng 13208 srgcl 13222 srgass 13223 srg1zr 13239 srgpcomp 13242 srgpcompp 13243 srgpcomppsc 13244 crngcom 13266 ringass 13268 ringidmlem 13274 ringidss 13281 ringpropd 13290 imasring 13312 qusring2 13314 mulgass3 13333 dvdsrd 13342 1unit 13355 unitmulcl 13361 dvrvald 13382 rdivmuldivd 13392 lringuplu 13416 subrngmcl 13429 subrg1 13451 subrgmcl 13453 subrgdv 13458 subrgunit 13459 aprval 13471 aprirr 13472 aprsym 13473 aprcotr 13474 lmodprop2d 13537 lidlss 13665 lidl0cl 13672 lidlacl 13673 lidlnegcl 13674 rnglidlmsgrp 13686 2idllidld 13694 2idlridld 13695 2idlcpblrng 13711 qus1 13714 quscrng 13720 iscnp4 14014 cnrest2r 14033 txbasval 14063 txlm 14075 xmetunirn 14154 xblss2ps 14200 blbas 14229 mopntopon 14239 isxms2 14248 metcnpi 14311 metcnpi2 14312 tgioo 14342 cncfmpt2fcntop 14381 limccl 14424 limcimolemlt 14429 limccnp2cntop 14442 dvmulxxbr 14462 dvcoapbr 14467 dvcjbr 14468 dvrecap 14473 |
Copyright terms: Public domain | W3C validator |