| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrd | Unicode version | ||
| Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
| Ref | Expression |
|---|---|
| eleqtrd.1 |
|
| eleqtrd.2 |
|
| Ref | Expression |
|---|---|
| eleqtrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrd.1 |
. 2
| |
| 2 | eleqtrd.2 |
. . 3
| |
| 3 | 2 | eleq2d 2277 |
. 2
|
| 4 | 1, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: eleqtrrd 2287 3eltr3d 2290 eleqtrid 2296 eleqtrdi 2300 opth1 4298 0nelop 4310 tfisi 4653 nnpredlt 4690 iotam 5282 ercl 6654 erth 6689 ecelqsdm 6715 phpm 6988 exmidpweq 7032 pw1if 7371 cc2lem 7413 cc3 7415 suplocexprlemmu 7866 suplocexprlemloc 7869 lincmb01cmp 10160 fzopth 10218 fzoaddel2 10356 fzosubel2 10361 fzocatel 10365 zpnn0elfzo1 10374 fzoend 10388 peano2fzor 10398 monoord2 10668 ser3mono 10669 bcpasc 10948 zfz1isolemiso 11021 swrdclg 11141 fisum0diag2 11873 isumsplit 11917 prodmodclem3 12001 prodmodclem2a 12002 nnmindc 12470 nnminle 12471 basmexd 13007 basm 13008 prdsbasfn 13228 prdsbasprj 13229 pwsplusgval 13242 pwsmulrval 13243 mgm1 13317 grpidd 13330 gsumress 13342 sgrppropd 13360 ismndd 13384 mndpropd 13387 issubmnd 13389 imasmnd 13400 grpidd2 13488 pwsinvg 13559 imasgrp 13562 submmulg 13617 subginvcl 13634 subgcl 13635 subgsub 13637 subgmulg 13639 1nsgtrivd 13670 quseccl0g 13682 kerf1ghm 13725 rngass 13816 rngcl 13821 rngpropd 13832 imasrng 13833 srgcl 13847 srgass 13848 srg1zr 13864 srgpcomp 13867 srgpcompp 13868 srgpcomppsc 13869 crngcom 13891 ringass 13893 ringidmlem 13899 ringidss 13906 ringpropd 13915 imasring 13941 qusring2 13943 mulgass3 13962 dvdsrd 13971 1unit 13984 unitmulcl 13990 dvrvald 14011 rdivmuldivd 14021 elrhmunit 14054 rhmunitinv 14055 lringuplu 14073 subrngmcl 14086 subrg1 14108 subrgmcl 14110 subrgdv 14115 subrgunit 14116 resrhm 14125 aprval 14159 aprirr 14160 aprsym 14161 aprcotr 14162 lmodprop2d 14225 lidlss 14353 lidl0cl 14360 lidlacl 14361 lidlnegcl 14362 rnglidlmsgrp 14374 2idllidld 14383 2idlridld 14384 2idlcpblrng 14400 qus1 14403 quscrng 14410 rspsn 14411 znf1o 14528 psrbagfi 14550 psrelbas 14552 iscnp4 14805 cnrest2r 14824 txbasval 14854 txlm 14866 xmetunirn 14945 xblss2ps 14991 blbas 15020 mopntopon 15030 isxms2 15039 metcnpi 15102 metcnpi2 15103 tgioo 15141 cncfmpt2fcntop 15186 limccl 15246 limcimolemlt 15251 limccnp2cntop 15264 dvmulxxbr 15289 dvcoapbr 15294 dvcjbr 15295 dvrecap 15300 plyaddlem1 15334 plymullem1 15335 plycoeid3 15344 lgseisenlem4 15665 |
| Copyright terms: Public domain | W3C validator |