![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleqtrd | Unicode version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eleqtrd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eleqtrd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eleqtrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eleqtrd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | eleq2d 2263 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbid 147 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: eleqtrrd 2273 3eltr3d 2276 eleqtrid 2282 eleqtrdi 2286 opth1 4266 0nelop 4278 tfisi 4620 nnpredlt 4657 iotam 5247 ercl 6600 erth 6635 ecelqsdm 6661 phpm 6923 exmidpweq 6967 cc2lem 7328 cc3 7330 suplocexprlemmu 7780 suplocexprlemloc 7783 lincmb01cmp 10072 fzopth 10130 fzoaddel2 10263 fzosubel2 10265 fzocatel 10269 zpnn0elfzo1 10278 fzoend 10292 peano2fzor 10302 monoord2 10560 ser3mono 10561 bcpasc 10840 zfz1isolemiso 10913 fisum0diag2 11593 isumsplit 11637 prodmodclem3 11721 prodmodclem2a 11722 nnmindc 12174 nnminle 12175 basmexd 12681 basm 12682 mgm1 12956 grpidd 12969 gsumress 12981 sgrppropd 12999 ismndd 13021 mndpropd 13024 issubmnd 13026 grpidd2 13116 imasgrp 13184 submmulg 13239 subginvcl 13256 subgcl 13257 subgsub 13259 subgmulg 13261 1nsgtrivd 13292 quseccl0g 13304 kerf1ghm 13347 rngass 13438 rngcl 13443 rngpropd 13454 imasrng 13455 srgcl 13469 srgass 13470 srg1zr 13486 srgpcomp 13489 srgpcompp 13490 srgpcomppsc 13491 crngcom 13513 ringass 13515 ringidmlem 13521 ringidss 13528 ringpropd 13537 imasring 13563 qusring2 13565 mulgass3 13584 dvdsrd 13593 1unit 13606 unitmulcl 13612 dvrvald 13633 rdivmuldivd 13643 elrhmunit 13676 rhmunitinv 13677 lringuplu 13695 subrngmcl 13708 subrg1 13730 subrgmcl 13732 subrgdv 13737 subrgunit 13738 resrhm 13747 aprval 13781 aprirr 13782 aprsym 13783 aprcotr 13784 lmodprop2d 13847 lidlss 13975 lidl0cl 13982 lidlacl 13983 lidlnegcl 13984 rnglidlmsgrp 13996 2idllidld 14005 2idlridld 14006 2idlcpblrng 14022 qus1 14025 quscrng 14032 rspsn 14033 znf1o 14150 psrelbas 14171 iscnp4 14397 cnrest2r 14416 txbasval 14446 txlm 14458 xmetunirn 14537 xblss2ps 14583 blbas 14612 mopntopon 14622 isxms2 14631 metcnpi 14694 metcnpi2 14695 tgioo 14733 cncfmpt2fcntop 14778 limccl 14838 limcimolemlt 14843 limccnp2cntop 14856 dvmulxxbr 14881 dvcoapbr 14886 dvcjbr 14887 dvrecap 14892 plyaddlem1 14926 plymullem1 14927 lgseisenlem4 15230 |
Copyright terms: Public domain | W3C validator |