Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleqtrd | Unicode version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eleqtrd.1 | |
eleqtrd.2 |
Ref | Expression |
---|---|
eleqtrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrd.1 | . 2 | |
2 | eleqtrd.2 | . . 3 | |
3 | 2 | eleq2d 2240 | . 2 |
4 | 1, 3 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: eleqtrrd 2250 3eltr3d 2253 eleqtrid 2259 eleqtrdi 2263 opth1 4221 0nelop 4233 tfisi 4571 nnpredlt 4608 iotam 5190 ercl 6524 erth 6557 ecelqsdm 6583 phpm 6843 exmidpweq 6887 cc2lem 7228 cc3 7230 suplocexprlemmu 7680 suplocexprlemloc 7683 lincmb01cmp 9960 fzopth 10017 fzoaddel2 10149 fzosubel2 10151 fzocatel 10155 zpnn0elfzo1 10164 fzoend 10178 peano2fzor 10188 monoord2 10433 ser3mono 10434 bcpasc 10700 zfz1isolemiso 10774 fisum0diag2 11410 isumsplit 11454 prodmodclem3 11538 prodmodclem2a 11539 nnmindc 11989 nnminle 11990 basmexd 12475 mgm1 12624 grpidd 12637 ismndd 12673 mndpropd 12676 grpidd2 12744 iscnp4 13012 cnrest2r 13031 txbasval 13061 txlm 13073 xmetunirn 13152 xblss2ps 13198 blbas 13227 mopntopon 13237 isxms2 13246 metcnpi 13309 metcnpi2 13310 tgioo 13340 cncfmpt2fcntop 13379 limccl 13422 limcimolemlt 13427 limccnp2cntop 13440 dvmulxxbr 13460 dvcoapbr 13465 dvcjbr 13466 dvrecap 13471 |
Copyright terms: Public domain | W3C validator |