| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrd | Unicode version | ||
| Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
| Ref | Expression |
|---|---|
| eleqtrd.1 |
|
| eleqtrd.2 |
|
| Ref | Expression |
|---|---|
| eleqtrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrd.1 |
. 2
| |
| 2 | eleqtrd.2 |
. . 3
| |
| 3 | 2 | eleq2d 2299 |
. 2
|
| 4 | 1, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: eleqtrrd 2309 3eltr3d 2312 eleqtrid 2318 eleqtrdi 2322 opth1 4322 0nelop 4334 tfisi 4679 nnpredlt 4716 iotam 5310 ercl 6691 erth 6726 ecelqsdm 6752 phpm 7027 exmidpweq 7071 pw1if 7410 cc2lem 7452 cc3 7454 suplocexprlemmu 7905 suplocexprlemloc 7908 lincmb01cmp 10199 fzopth 10257 fzoaddel2 10396 fzosubel2 10401 fzocatel 10405 zpnn0elfzo1 10414 fzoend 10428 peano2fzor 10438 monoord2 10708 ser3mono 10709 bcpasc 10988 zfz1isolemiso 11061 swrdclg 11182 fisum0diag2 11958 isumsplit 12002 prodmodclem3 12086 prodmodclem2a 12087 nnmindc 12555 nnminle 12556 bassetsnn 13089 basmexd 13093 basm 13094 prdsbasfn 13314 prdsbasprj 13315 pwsplusgval 13328 pwsmulrval 13329 mgm1 13403 grpidd 13416 gsumress 13428 sgrppropd 13446 ismndd 13470 mndpropd 13473 issubmnd 13475 imasmnd 13486 grpidd2 13574 pwsinvg 13645 imasgrp 13648 submmulg 13703 subginvcl 13720 subgcl 13721 subgsub 13723 subgmulg 13725 1nsgtrivd 13756 quseccl0g 13768 kerf1ghm 13811 rngass 13902 rngcl 13907 rngpropd 13918 imasrng 13919 srgcl 13933 srgass 13934 srg1zr 13950 srgpcomp 13953 srgpcompp 13954 srgpcomppsc 13955 crngcom 13977 ringass 13979 ringidmlem 13985 ringidss 13992 ringpropd 14001 imasring 14027 qusring2 14029 mulgass3 14048 dvdsrd 14058 1unit 14071 unitmulcl 14077 dvrvald 14098 rdivmuldivd 14108 elrhmunit 14141 rhmunitinv 14142 lringuplu 14160 subrngmcl 14173 subrg1 14195 subrgmcl 14197 subrgdv 14202 subrgunit 14203 resrhm 14212 aprval 14246 aprirr 14247 aprsym 14248 aprcotr 14249 lmodprop2d 14312 lidlss 14440 lidl0cl 14447 lidlacl 14448 lidlnegcl 14449 rnglidlmsgrp 14461 2idllidld 14470 2idlridld 14471 2idlcpblrng 14487 qus1 14490 quscrng 14497 rspsn 14498 znf1o 14615 psrbagfi 14637 psrelbas 14639 iscnp4 14892 cnrest2r 14911 txbasval 14941 txlm 14953 xmetunirn 15032 xblss2ps 15078 blbas 15107 mopntopon 15117 isxms2 15126 metcnpi 15189 metcnpi2 15190 tgioo 15228 cncfmpt2fcntop 15273 limccl 15333 limcimolemlt 15338 limccnp2cntop 15351 dvmulxxbr 15376 dvcoapbr 15381 dvcjbr 15382 dvrecap 15387 plyaddlem1 15421 plymullem1 15422 plycoeid3 15431 lgseisenlem4 15752 |
| Copyright terms: Public domain | W3C validator |