| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablcmn | GIF version | ||
| Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ablcmn | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 13418 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 Grpcgrp 13132 CMndccmn 13414 Abelcabl 13415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-abl 13417 |
| This theorem is referenced by: ablcmnd 13422 ablcom 13433 abl32 13437 ablsub4 13443 ghmabl 13458 ringcmn 13589 lmodcmn 13891 lgseisenlem4 15314 |
| Copyright terms: Public domain | W3C validator |