![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ablcom | Unicode version |
Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.) |
Ref | Expression |
---|---|
ablcom.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ablcom.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ablcom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcmn 13361 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ablcom.b |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ablcom.p |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | cmncom 13372 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | syl3an1 1282 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-in 3159 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-cmn 13356 df-abl 13357 |
This theorem is referenced by: ablinvadd 13380 ablsub2inv 13381 ablsubadd 13382 abladdsub 13385 ablpncan3 13387 ablsub32 13392 ablnnncan 13393 ablsubsub23 13395 eqgabl 13400 subgabl 13402 ablnsg 13404 ablressid 13405 imasabl 13406 subrngringnsg 13701 |
Copyright terms: Public domain | W3C validator |