| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablcom | Unicode version | ||
| Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablcom.b |
|
| ablcom.p |
|
| Ref | Expression |
|---|---|
| ablcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcmn 13598 |
. 2
| |
| 2 | ablcom.b |
. . 3
| |
| 3 | ablcom.p |
. . 3
| |
| 4 | 2, 3 | cmncom 13609 |
. 2
|
| 5 | 1, 4 | syl3an1 1282 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-cmn 13593 df-abl 13594 |
| This theorem is referenced by: ablinvadd 13617 ablsub2inv 13618 ablsubadd 13619 abladdsub 13622 ablpncan3 13624 ablsub32 13629 ablnnncan 13630 ablsubsub23 13632 eqgabl 13637 subgabl 13639 ablnsg 13641 ablressid 13642 imasabl 13643 subrngringnsg 13938 |
| Copyright terms: Public domain | W3C validator |