ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablcom Unicode version

Theorem ablcom 13099
Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.)
Hypotheses
Ref Expression
ablcom.b  |-  B  =  ( Base `  G
)
ablcom.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
ablcom  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem ablcom
StepHypRef Expression
1 ablcmn 13088 . 2  |-  ( G  e.  Abel  ->  G  e. CMnd
)
2 ablcom.b . . 3  |-  B  =  ( Base `  G
)
3 ablcom.p . . 3  |-  .+  =  ( +g  `  G )
42, 3cmncom 13098 . 2  |-  ( ( G  e. CMnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
51, 4syl3an1 1271 1  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353    e. wcel 2148   ` cfv 5216  (class class class)co 5874   Basecbs 12456   +g cplusg 12530  CMndccmn 13081   Abelcabl 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-un 3133  df-in 3135  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-iota 5178  df-fv 5224  df-ov 5877  df-cmn 13083  df-abl 13084
This theorem is referenced by:  ablinvadd  13106  ablsub2inv  13107  ablsubadd  13108  abladdsub  13111  ablpncan3  13113  ablsub32  13118  ablnnncan  13119  ablsubsub23  13121
  Copyright terms: Public domain W3C validator