Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ablcom | Unicode version |
Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.) |
Ref | Expression |
---|---|
ablcom.b | |
ablcom.p |
Ref | Expression |
---|---|
ablcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcmn 12891 | . 2 CMnd | |
2 | ablcom.b | . . 3 | |
3 | ablcom.p | . . 3 | |
4 | 2, 3 | cmncom 12901 | . 2 CMnd |
5 | 1, 4 | syl3an1 1271 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 978 wceq 1353 wcel 2146 cfv 5208 (class class class)co 5865 cbs 12428 cplusg 12492 CMndccmn 12884 cabl 12885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-un 3131 df-in 3133 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 df-cmn 12886 df-abl 12887 |
This theorem is referenced by: ablinvadd 12909 ablsub2inv 12910 ablsubadd 12911 abladdsub 12914 ablpncan3 12916 ablsub32 12921 ablnnncan 12922 ablsubsub23 12924 |
Copyright terms: Public domain | W3C validator |