| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablcom | Unicode version | ||
| Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablcom.b |
|
| ablcom.p |
|
| Ref | Expression |
|---|---|
| ablcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcmn 13421 |
. 2
| |
| 2 | ablcom.b |
. . 3
| |
| 3 | ablcom.p |
. . 3
| |
| 4 | 2, 3 | cmncom 13432 |
. 2
|
| 5 | 1, 4 | syl3an1 1282 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-cmn 13416 df-abl 13417 |
| This theorem is referenced by: ablinvadd 13440 ablsub2inv 13441 ablsubadd 13442 abladdsub 13445 ablpncan3 13447 ablsub32 13452 ablnnncan 13453 ablsubsub23 13455 eqgabl 13460 subgabl 13462 ablnsg 13464 ablressid 13465 imasabl 13466 subrngringnsg 13761 |
| Copyright terms: Public domain | W3C validator |