| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablcom | Unicode version | ||
| Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablcom.b |
|
| ablcom.p |
|
| Ref | Expression |
|---|---|
| ablcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcmn 13742 |
. 2
| |
| 2 | ablcom.b |
. . 3
| |
| 3 | ablcom.p |
. . 3
| |
| 4 | 2, 3 | cmncom 13753 |
. 2
|
| 5 | 1, 4 | syl3an1 1283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-cmn 13737 df-abl 13738 |
| This theorem is referenced by: ablinvadd 13761 ablsub2inv 13762 ablsubadd 13763 abladdsub 13766 ablpncan3 13768 ablsub32 13773 ablnnncan 13774 ablsubsub23 13776 eqgabl 13781 subgabl 13783 ablnsg 13785 ablressid 13786 imasabl 13787 subrngringnsg 14082 |
| Copyright terms: Public domain | W3C validator |