ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablcom Unicode version

Theorem ablcom 12902
Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.)
Hypotheses
Ref Expression
ablcom.b  |-  B  =  ( Base `  G
)
ablcom.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
ablcom  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem ablcom
StepHypRef Expression
1 ablcmn 12891 . 2  |-  ( G  e.  Abel  ->  G  e. CMnd
)
2 ablcom.b . . 3  |-  B  =  ( Base `  G
)
3 ablcom.p . . 3  |-  .+  =  ( +g  `  G )
42, 3cmncom 12901 . 2  |-  ( ( G  e. CMnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
51, 4syl3an1 1271 1  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353    e. wcel 2146   ` cfv 5208  (class class class)co 5865   Basecbs 12428   +g cplusg 12492  CMndccmn 12884   Abelcabl 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-un 3131  df-in 3133  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-iota 5170  df-fv 5216  df-ov 5868  df-cmn 12886  df-abl 12887
This theorem is referenced by:  ablinvadd  12909  ablsub2inv  12910  ablsubadd  12911  abladdsub  12914  ablpncan3  12916  ablsub32  12921  ablnnncan  12922  ablsubsub23  12924
  Copyright terms: Public domain W3C validator