| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablcom | Unicode version | ||
| Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablcom.b |
|
| ablcom.p |
|
| Ref | Expression |
|---|---|
| ablcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcmn 13627 |
. 2
| |
| 2 | ablcom.b |
. . 3
| |
| 3 | ablcom.p |
. . 3
| |
| 4 | 2, 3 | cmncom 13638 |
. 2
|
| 5 | 1, 4 | syl3an1 1283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-cmn 13622 df-abl 13623 |
| This theorem is referenced by: ablinvadd 13646 ablsub2inv 13647 ablsubadd 13648 abladdsub 13651 ablpncan3 13653 ablsub32 13658 ablnnncan 13659 ablsubsub23 13661 eqgabl 13666 subgabl 13668 ablnsg 13670 ablressid 13671 imasabl 13672 subrngringnsg 13967 |
| Copyright terms: Public domain | W3C validator |