ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isabl Unicode version

Theorem isabl 12888
Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.)
Assertion
Ref Expression
isabl  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )

Proof of Theorem isabl
StepHypRef Expression
1 df-abl 12887 . 2  |-  Abel  =  ( Grp  i^i CMnd )
21elin2 3321 1  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2146   Grpcgrp 12738  CMndccmn 12884   Abelcabl 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133  df-abl 12887
This theorem is referenced by:  ablgrp  12889  ablcmn  12891  isabl2  12893  ablpropd  12895  isabld  12898
  Copyright terms: Public domain W3C validator