ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isabl Unicode version

Theorem isabl 13624
Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.)
Assertion
Ref Expression
isabl  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )

Proof of Theorem isabl
StepHypRef Expression
1 df-abl 13623 . 2  |-  Abel  =  ( Grp  i^i CMnd )
21elin2 3361 1  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2176   Grpcgrp 13332  CMndccmn 13620   Abelcabl 13621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-abl 13623
This theorem is referenced by:  ablgrp  13625  ablcmn  13627  isabl2  13630  ablpropd  13632  isabld  13635  ghmabl  13664  unitabl  13879
  Copyright terms: Public domain W3C validator