ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isabl Unicode version

Theorem isabl 13739
Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.)
Assertion
Ref Expression
isabl  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )

Proof of Theorem isabl
StepHypRef Expression
1 df-abl 13738 . 2  |-  Abel  =  ( Grp  i^i CMnd )
21elin2 3369 1  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2178   Grpcgrp 13447  CMndccmn 13735   Abelcabl 13736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-abl 13738
This theorem is referenced by:  ablgrp  13740  ablcmn  13742  isabl2  13745  ablpropd  13747  isabld  13750  ghmabl  13779  unitabl  13994
  Copyright terms: Public domain W3C validator