ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isabl Unicode version

Theorem isabl 13418
Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.)
Assertion
Ref Expression
isabl  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )

Proof of Theorem isabl
StepHypRef Expression
1 df-abl 13417 . 2  |-  Abel  =  ( Grp  i^i CMnd )
21elin2 3351 1  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2167   Grpcgrp 13132  CMndccmn 13414   Abelcabl 13415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-abl 13417
This theorem is referenced by:  ablgrp  13419  ablcmn  13421  isabl2  13424  ablpropd  13426  isabld  13429  ghmabl  13458  unitabl  13673
  Copyright terms: Public domain W3C validator