| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iscmn | Unicode version | ||
| Description: The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| iscmn.b | 
 | 
| iscmn.p | 
 | 
| Ref | Expression | 
|---|---|
| iscmn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq2 5558 | 
. . . . 5
 | |
| 2 | iscmn.b | 
. . . . 5
 | |
| 3 | 1, 2 | eqtr4di 2247 | 
. . . 4
 | 
| 4 | raleq 2693 | 
. . . . 5
 | |
| 5 | 4 | raleqbi1dv 2705 | 
. . . 4
 | 
| 6 | 3, 5 | syl 14 | 
. . 3
 | 
| 7 | fveq2 5558 | 
. . . . . . 7
 | |
| 8 | iscmn.p | 
. . . . . . 7
 | |
| 9 | 7, 8 | eqtr4di 2247 | 
. . . . . 6
 | 
| 10 | 9 | oveqd 5939 | 
. . . . 5
 | 
| 11 | 9 | oveqd 5939 | 
. . . . 5
 | 
| 12 | 10, 11 | eqeq12d 2211 | 
. . . 4
 | 
| 13 | 12 | 2ralbidv 2521 | 
. . 3
 | 
| 14 | 6, 13 | bitrd 188 | 
. 2
 | 
| 15 | df-cmn 13416 | 
. 2
 | |
| 16 | 14, 15 | elrab2 2923 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-cmn 13416 | 
| This theorem is referenced by: isabl2 13424 cmnpropd 13425 iscmnd 13428 cmnmnd 13431 cmncom 13432 ghmcmn 13457 iscrng2 13571 | 
| Copyright terms: Public domain | W3C validator |