ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscmn Unicode version

Theorem iscmn 13363
Description: The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
iscmn.b  |-  B  =  ( Base `  G
)
iscmn.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
iscmn  |-  ( G  e. CMnd 
<->  ( G  e.  Mnd  /\ 
A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
Distinct variable groups:    x, y, B   
x, G, y
Allowed substitution hints:    .+ ( x, y)

Proof of Theorem iscmn
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 fveq2 5554 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
2 iscmn.b . . . . 5  |-  B  =  ( Base `  G
)
31, 2eqtr4di 2244 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  B )
4 raleq 2690 . . . . 5  |-  ( (
Base `  g )  =  B  ->  ( A. y  e.  ( Base `  g ) ( x ( +g  `  g
) y )  =  ( y ( +g  `  g ) x )  <->  A. y  e.  B  ( x ( +g  `  g ) y )  =  ( y ( +g  `  g ) x ) ) )
54raleqbi1dv 2702 . . . 4  |-  ( (
Base `  g )  =  B  ->  ( A. x  e.  ( Base `  g ) A. y  e.  ( Base `  g
) ( x ( +g  `  g ) y )  =  ( y ( +g  `  g
) x )  <->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  g ) y )  =  ( y ( +g  `  g
) x ) ) )
63, 5syl 14 . . 3  |-  ( g  =  G  ->  ( A. x  e.  ( Base `  g ) A. y  e.  ( Base `  g ) ( x ( +g  `  g
) y )  =  ( y ( +g  `  g ) x )  <->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  g ) y )  =  ( y ( +g  `  g ) x ) ) )
7 fveq2 5554 . . . . . . 7  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
8 iscmn.p . . . . . . 7  |-  .+  =  ( +g  `  G )
97, 8eqtr4di 2244 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
109oveqd 5935 . . . . 5  |-  ( g  =  G  ->  (
x ( +g  `  g
) y )  =  ( x  .+  y
) )
119oveqd 5935 . . . . 5  |-  ( g  =  G  ->  (
y ( +g  `  g
) x )  =  ( y  .+  x
) )
1210, 11eqeq12d 2208 . . . 4  |-  ( g  =  G  ->  (
( x ( +g  `  g ) y )  =  ( y ( +g  `  g ) x )  <->  ( x  .+  y )  =  ( y  .+  x ) ) )
13122ralbidv 2518 . . 3  |-  ( g  =  G  ->  ( A. x  e.  B  A. y  e.  B  ( x ( +g  `  g ) y )  =  ( y ( +g  `  g ) x )  <->  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
146, 13bitrd 188 . 2  |-  ( g  =  G  ->  ( A. x  e.  ( Base `  g ) A. y  e.  ( Base `  g ) ( x ( +g  `  g
) y )  =  ( y ( +g  `  g ) x )  <->  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
15 df-cmn 13356 . 2  |- CMnd  =  {
g  e.  Mnd  |  A. x  e.  ( Base `  g ) A. y  e.  ( Base `  g ) ( x ( +g  `  g
) y )  =  ( y ( +g  `  g ) x ) }
1614, 15elrab2 2919 1  |-  ( G  e. CMnd 
<->  ( G  e.  Mnd  /\ 
A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   Mndcmnd 12997  CMndccmn 13354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-cmn 13356
This theorem is referenced by:  isabl2  13364  cmnpropd  13365  iscmnd  13368  cmnmnd  13371  cmncom  13372  ghmcmn  13397  iscrng2  13511
  Copyright terms: Public domain W3C validator