ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscmn Unicode version

Theorem iscmn 12892
Description: The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
iscmn.b  |-  B  =  ( Base `  G
)
iscmn.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
iscmn  |-  ( G  e. CMnd 
<->  ( G  e.  Mnd  /\ 
A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
Distinct variable groups:    x, y, B   
x, G, y
Allowed substitution hints:    .+ ( x, y)

Proof of Theorem iscmn
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 fveq2 5507 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
2 iscmn.b . . . . 5  |-  B  =  ( Base `  G
)
31, 2eqtr4di 2226 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  B )
4 raleq 2670 . . . . 5  |-  ( (
Base `  g )  =  B  ->  ( A. y  e.  ( Base `  g ) ( x ( +g  `  g
) y )  =  ( y ( +g  `  g ) x )  <->  A. y  e.  B  ( x ( +g  `  g ) y )  =  ( y ( +g  `  g ) x ) ) )
54raleqbi1dv 2678 . . . 4  |-  ( (
Base `  g )  =  B  ->  ( A. x  e.  ( Base `  g ) A. y  e.  ( Base `  g
) ( x ( +g  `  g ) y )  =  ( y ( +g  `  g
) x )  <->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  g ) y )  =  ( y ( +g  `  g
) x ) ) )
63, 5syl 14 . . 3  |-  ( g  =  G  ->  ( A. x  e.  ( Base `  g ) A. y  e.  ( Base `  g ) ( x ( +g  `  g
) y )  =  ( y ( +g  `  g ) x )  <->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  g ) y )  =  ( y ( +g  `  g ) x ) ) )
7 fveq2 5507 . . . . . . 7  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
8 iscmn.p . . . . . . 7  |-  .+  =  ( +g  `  G )
97, 8eqtr4di 2226 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
109oveqd 5882 . . . . 5  |-  ( g  =  G  ->  (
x ( +g  `  g
) y )  =  ( x  .+  y
) )
119oveqd 5882 . . . . 5  |-  ( g  =  G  ->  (
y ( +g  `  g
) x )  =  ( y  .+  x
) )
1210, 11eqeq12d 2190 . . . 4  |-  ( g  =  G  ->  (
( x ( +g  `  g ) y )  =  ( y ( +g  `  g ) x )  <->  ( x  .+  y )  =  ( y  .+  x ) ) )
13122ralbidv 2499 . . 3  |-  ( g  =  G  ->  ( A. x  e.  B  A. y  e.  B  ( x ( +g  `  g ) y )  =  ( y ( +g  `  g ) x )  <->  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
146, 13bitrd 188 . 2  |-  ( g  =  G  ->  ( A. x  e.  ( Base `  g ) A. y  e.  ( Base `  g ) ( x ( +g  `  g
) y )  =  ( y ( +g  `  g ) x )  <->  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
15 df-cmn 12886 . 2  |- CMnd  =  {
g  e.  Mnd  |  A. x  e.  ( Base `  g ) A. y  e.  ( Base `  g ) ( x ( +g  `  g
) y )  =  ( y ( +g  `  g ) x ) }
1614, 15elrab2 2894 1  |-  ( G  e. CMnd 
<->  ( G  e.  Mnd  /\ 
A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453   ` cfv 5208  (class class class)co 5865   Basecbs 12428   +g cplusg 12492   Mndcmnd 12682  CMndccmn 12884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-iota 5170  df-fv 5216  df-ov 5868  df-cmn 12886
This theorem is referenced by:  isabl2  12893  cmnpropd  12894  iscmnd  12897  cmnmnd  12900  cmncom  12901
  Copyright terms: Public domain W3C validator