ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscmn Unicode version

Theorem iscmn 13830
Description: The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
iscmn.b  |-  B  =  ( Base `  G
)
iscmn.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
iscmn  |-  ( G  e. CMnd 
<->  ( G  e.  Mnd  /\ 
A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
Distinct variable groups:    x, y, B   
x, G, y
Allowed substitution hints:    .+ ( x, y)

Proof of Theorem iscmn
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 fveq2 5627 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
2 iscmn.b . . . . 5  |-  B  =  ( Base `  G
)
31, 2eqtr4di 2280 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  B )
4 raleq 2728 . . . . 5  |-  ( (
Base `  g )  =  B  ->  ( A. y  e.  ( Base `  g ) ( x ( +g  `  g
) y )  =  ( y ( +g  `  g ) x )  <->  A. y  e.  B  ( x ( +g  `  g ) y )  =  ( y ( +g  `  g ) x ) ) )
54raleqbi1dv 2740 . . . 4  |-  ( (
Base `  g )  =  B  ->  ( A. x  e.  ( Base `  g ) A. y  e.  ( Base `  g
) ( x ( +g  `  g ) y )  =  ( y ( +g  `  g
) x )  <->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  g ) y )  =  ( y ( +g  `  g
) x ) ) )
63, 5syl 14 . . 3  |-  ( g  =  G  ->  ( A. x  e.  ( Base `  g ) A. y  e.  ( Base `  g ) ( x ( +g  `  g
) y )  =  ( y ( +g  `  g ) x )  <->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  g ) y )  =  ( y ( +g  `  g ) x ) ) )
7 fveq2 5627 . . . . . . 7  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
8 iscmn.p . . . . . . 7  |-  .+  =  ( +g  `  G )
97, 8eqtr4di 2280 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
109oveqd 6018 . . . . 5  |-  ( g  =  G  ->  (
x ( +g  `  g
) y )  =  ( x  .+  y
) )
119oveqd 6018 . . . . 5  |-  ( g  =  G  ->  (
y ( +g  `  g
) x )  =  ( y  .+  x
) )
1210, 11eqeq12d 2244 . . . 4  |-  ( g  =  G  ->  (
( x ( +g  `  g ) y )  =  ( y ( +g  `  g ) x )  <->  ( x  .+  y )  =  ( y  .+  x ) ) )
13122ralbidv 2554 . . 3  |-  ( g  =  G  ->  ( A. x  e.  B  A. y  e.  B  ( x ( +g  `  g ) y )  =  ( y ( +g  `  g ) x )  <->  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
146, 13bitrd 188 . 2  |-  ( g  =  G  ->  ( A. x  e.  ( Base `  g ) A. y  e.  ( Base `  g ) ( x ( +g  `  g
) y )  =  ( y ( +g  `  g ) x )  <->  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
15 df-cmn 13823 . 2  |- CMnd  =  {
g  e.  Mnd  |  A. x  e.  ( Base `  g ) A. y  e.  ( Base `  g ) ( x ( +g  `  g
) y )  =  ( y ( +g  `  g ) x ) }
1614, 15elrab2 2962 1  |-  ( G  e. CMnd 
<->  ( G  e.  Mnd  /\ 
A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   Mndcmnd 13449  CMndccmn 13821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-cmn 13823
This theorem is referenced by:  isabl2  13831  cmnpropd  13832  iscmnd  13835  cmnmnd  13838  cmncom  13839  ghmcmn  13864  iscrng2  13978
  Copyright terms: Public domain W3C validator