| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iscmn | Unicode version | ||
| Description: The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| iscmn.b |
|
| iscmn.p |
|
| Ref | Expression |
|---|---|
| iscmn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5627 |
. . . . 5
| |
| 2 | iscmn.b |
. . . . 5
| |
| 3 | 1, 2 | eqtr4di 2280 |
. . . 4
|
| 4 | raleq 2728 |
. . . . 5
| |
| 5 | 4 | raleqbi1dv 2740 |
. . . 4
|
| 6 | 3, 5 | syl 14 |
. . 3
|
| 7 | fveq2 5627 |
. . . . . . 7
| |
| 8 | iscmn.p |
. . . . . . 7
| |
| 9 | 7, 8 | eqtr4di 2280 |
. . . . . 6
|
| 10 | 9 | oveqd 6018 |
. . . . 5
|
| 11 | 9 | oveqd 6018 |
. . . . 5
|
| 12 | 10, 11 | eqeq12d 2244 |
. . . 4
|
| 13 | 12 | 2ralbidv 2554 |
. . 3
|
| 14 | 6, 13 | bitrd 188 |
. 2
|
| 15 | df-cmn 13823 |
. 2
| |
| 16 | 14, 15 | elrab2 2962 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-cmn 13823 |
| This theorem is referenced by: isabl2 13831 cmnpropd 13832 iscmnd 13835 cmnmnd 13838 cmncom 13839 ghmcmn 13864 iscrng2 13978 |
| Copyright terms: Public domain | W3C validator |