ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abl32 Unicode version

Theorem abl32 13366
Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablcom.b  |-  B  =  ( Base `  G
)
ablcom.p  |-  .+  =  ( +g  `  G )
abl32.g  |-  ( ph  ->  G  e.  Abel )
abl32.x  |-  ( ph  ->  X  e.  B )
abl32.y  |-  ( ph  ->  Y  e.  B )
abl32.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
abl32  |-  ( ph  ->  ( ( X  .+  Y )  .+  Z
)  =  ( ( X  .+  Z ) 
.+  Y ) )

Proof of Theorem abl32
StepHypRef Expression
1 abl32.g . . 3  |-  ( ph  ->  G  e.  Abel )
2 ablcmn 13350 . . 3  |-  ( G  e.  Abel  ->  G  e. CMnd
)
31, 2syl 14 . 2  |-  ( ph  ->  G  e. CMnd )
4 abl32.x . 2  |-  ( ph  ->  X  e.  B )
5 abl32.y . 2  |-  ( ph  ->  Y  e.  B )
6 abl32.z . 2  |-  ( ph  ->  Z  e.  B )
7 ablcom.b . . 3  |-  B  =  ( Base `  G
)
8 ablcom.p . . 3  |-  .+  =  ( +g  `  G )
97, 8cmn32 13363 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .+  Y )  .+  Z )  =  ( ( X  .+  Z
)  .+  Y )
)
103, 4, 5, 6, 9syl13anc 1251 1  |-  ( ph  ->  ( ( X  .+  Y )  .+  Z
)  =  ( ( X  .+  Z ) 
.+  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   ` cfv 5246  (class class class)co 5910   Basecbs 12608   +g cplusg 12685  CMndccmn 13343   Abelcabl 13344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-cnex 7953  ax-resscn 7954  ax-1re 7956  ax-addrcl 7959
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-iota 5207  df-fun 5248  df-fn 5249  df-fv 5254  df-ov 5913  df-inn 8973  df-2 9031  df-ndx 12611  df-slot 12612  df-base 12614  df-plusg 12698  df-sgrp 12975  df-mnd 12988  df-cmn 13345  df-abl 13346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator