ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abl32 Unicode version

Theorem abl32 13115
Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablcom.b  |-  B  =  ( Base `  G
)
ablcom.p  |-  .+  =  ( +g  `  G )
abl32.g  |-  ( ph  ->  G  e.  Abel )
abl32.x  |-  ( ph  ->  X  e.  B )
abl32.y  |-  ( ph  ->  Y  e.  B )
abl32.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
abl32  |-  ( ph  ->  ( ( X  .+  Y )  .+  Z
)  =  ( ( X  .+  Z ) 
.+  Y ) )

Proof of Theorem abl32
StepHypRef Expression
1 abl32.g . . 3  |-  ( ph  ->  G  e.  Abel )
2 ablcmn 13100 . . 3  |-  ( G  e.  Abel  ->  G  e. CMnd
)
31, 2syl 14 . 2  |-  ( ph  ->  G  e. CMnd )
4 abl32.x . 2  |-  ( ph  ->  X  e.  B )
5 abl32.y . 2  |-  ( ph  ->  Y  e.  B )
6 abl32.z . 2  |-  ( ph  ->  Z  e.  B )
7 ablcom.b . . 3  |-  B  =  ( Base `  G
)
8 ablcom.p . . 3  |-  .+  =  ( +g  `  G )
97, 8cmn32 13112 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .+  Y )  .+  Z )  =  ( ( X  .+  Z
)  .+  Y )
)
103, 4, 5, 6, 9syl13anc 1240 1  |-  ( ph  ->  ( ( X  .+  Y )  .+  Z
)  =  ( ( X  .+  Z ) 
.+  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538  CMndccmn 13093   Abelcabl 13094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-sgrp 12813  df-mnd 12823  df-cmn 13095  df-abl 13096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator