ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abl32 Unicode version

Theorem abl32 13643
Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablcom.b  |-  B  =  ( Base `  G
)
ablcom.p  |-  .+  =  ( +g  `  G )
abl32.g  |-  ( ph  ->  G  e.  Abel )
abl32.x  |-  ( ph  ->  X  e.  B )
abl32.y  |-  ( ph  ->  Y  e.  B )
abl32.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
abl32  |-  ( ph  ->  ( ( X  .+  Y )  .+  Z
)  =  ( ( X  .+  Z ) 
.+  Y ) )

Proof of Theorem abl32
StepHypRef Expression
1 abl32.g . . 3  |-  ( ph  ->  G  e.  Abel )
2 ablcmn 13627 . . 3  |-  ( G  e.  Abel  ->  G  e. CMnd
)
31, 2syl 14 . 2  |-  ( ph  ->  G  e. CMnd )
4 abl32.x . 2  |-  ( ph  ->  X  e.  B )
5 abl32.y . 2  |-  ( ph  ->  Y  e.  B )
6 abl32.z . 2  |-  ( ph  ->  Z  e.  B )
7 ablcom.b . . 3  |-  B  =  ( Base `  G
)
8 ablcom.p . . 3  |-  .+  =  ( +g  `  G )
97, 8cmn32 13640 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .+  Y )  .+  Z )  =  ( ( X  .+  Z
)  .+  Y )
)
103, 4, 5, 6, 9syl13anc 1252 1  |-  ( ph  ->  ( ( X  .+  Y )  .+  Z
)  =  ( ( X  .+  Z ) 
.+  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909  CMndccmn 13620   Abelcabl 13621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-sgrp 13234  df-mnd 13249  df-cmn 13622  df-abl 13623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator