| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablsub4 | Unicode version | ||
| Description: Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| ablsubadd.b |
|
| ablsubadd.p |
|
| ablsubadd.m |
|
| Ref | Expression |
|---|---|
| ablsub4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablgrp 13740 |
. . . . 5
| |
| 2 | 1 | 3ad2ant1 1021 |
. . . 4
|
| 3 | simp2l 1026 |
. . . 4
| |
| 4 | simp2r 1027 |
. . . 4
| |
| 5 | ablsubadd.b |
. . . . 5
| |
| 6 | ablsubadd.p |
. . . . 5
| |
| 7 | 5, 6 | grpcl 13455 |
. . . 4
|
| 8 | 2, 3, 4, 7 | syl3anc 1250 |
. . 3
|
| 9 | simp3l 1028 |
. . . 4
| |
| 10 | simp3r 1029 |
. . . 4
| |
| 11 | 5, 6 | grpcl 13455 |
. . . 4
|
| 12 | 2, 9, 10, 11 | syl3anc 1250 |
. . 3
|
| 13 | eqid 2207 |
. . . 4
| |
| 14 | ablsubadd.m |
. . . 4
| |
| 15 | 5, 6, 13, 14 | grpsubval 13493 |
. . 3
|
| 16 | 8, 12, 15 | syl2anc 411 |
. 2
|
| 17 | ablcmn 13742 |
. . . . 5
| |
| 18 | 17 | 3ad2ant1 1021 |
. . . 4
|
| 19 | simp2 1001 |
. . . 4
| |
| 20 | 5, 13 | grpinvcl 13495 |
. . . . 5
|
| 21 | 2, 9, 20 | syl2anc 411 |
. . . 4
|
| 22 | 5, 13 | grpinvcl 13495 |
. . . . 5
|
| 23 | 2, 10, 22 | syl2anc 411 |
. . . 4
|
| 24 | 5, 6 | cmn4 13756 |
. . . 4
|
| 25 | 18, 19, 21, 23, 24 | syl112anc 1254 |
. . 3
|
| 26 | simp1 1000 |
. . . . 5
| |
| 27 | 5, 6, 13 | ablinvadd 13761 |
. . . . 5
|
| 28 | 26, 9, 10, 27 | syl3anc 1250 |
. . . 4
|
| 29 | 28 | oveq2d 5983 |
. . 3
|
| 30 | 5, 6, 13, 14 | grpsubval 13493 |
. . . . 5
|
| 31 | 3, 9, 30 | syl2anc 411 |
. . . 4
|
| 32 | 5, 6, 13, 14 | grpsubval 13493 |
. . . . 5
|
| 33 | 4, 10, 32 | syl2anc 411 |
. . . 4
|
| 34 | 31, 33 | oveq12d 5985 |
. . 3
|
| 35 | 25, 29, 34 | 3eqtr4d 2250 |
. 2
|
| 36 | 16, 35 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-sbg 13452 df-cmn 13737 df-abl 13738 |
| This theorem is referenced by: abladdsub4 13765 ablpnpcan 13771 |
| Copyright terms: Public domain | W3C validator |