ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsub4 Unicode version

Theorem ablsub4 13649
Description: Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablsubadd.b  |-  B  =  ( Base `  G
)
ablsubadd.p  |-  .+  =  ( +g  `  G )
ablsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
ablsub4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  W ) )  =  ( ( X  .-  Z )  .+  ( Y  .-  W ) ) )

Proof of Theorem ablsub4
StepHypRef Expression
1 ablgrp 13625 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
213ad2ant1 1021 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e.  Grp )
3 simp2l 1026 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  X  e.  B )
4 simp2r 1027 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  Y  e.  B )
5 ablsubadd.b . . . . 5  |-  B  =  ( Base `  G
)
6 ablsubadd.p . . . . 5  |-  .+  =  ( +g  `  G )
75, 6grpcl 13340 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
82, 3, 4, 7syl3anc 1250 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( X  .+  Y )  e.  B )
9 simp3l 1028 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  Z  e.  B )
10 simp3r 1029 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  W  e.  B )
115, 6grpcl 13340 . . . 4  |-  ( ( G  e.  Grp  /\  Z  e.  B  /\  W  e.  B )  ->  ( Z  .+  W
)  e.  B )
122, 9, 10, 11syl3anc 1250 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Z  .+  W )  e.  B )
13 eqid 2205 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
14 ablsubadd.m . . . 4  |-  .-  =  ( -g `  G )
155, 6, 13, 14grpsubval 13378 . . 3  |-  ( ( ( X  .+  Y
)  e.  B  /\  ( Z  .+  W )  e.  B )  -> 
( ( X  .+  Y )  .-  ( Z  .+  W ) )  =  ( ( X 
.+  Y )  .+  ( ( invg `  G ) `  ( Z  .+  W ) ) ) )
168, 12, 15syl2anc 411 . 2  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  W ) )  =  ( ( X  .+  Y )  .+  (
( invg `  G ) `  ( Z  .+  W ) ) ) )
17 ablcmn 13627 . . . . 5  |-  ( G  e.  Abel  ->  G  e. CMnd
)
18173ad2ant1 1021 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e. CMnd )
19 simp2 1001 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( X  e.  B  /\  Y  e.  B )
)
205, 13grpinvcl 13380 . . . . 5  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( invg `  G ) `  Z
)  e.  B )
212, 9, 20syl2anc 411 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( invg `  G ) `  Z
)  e.  B )
225, 13grpinvcl 13380 . . . . 5  |-  ( ( G  e.  Grp  /\  W  e.  B )  ->  ( ( invg `  G ) `  W
)  e.  B )
232, 10, 22syl2anc 411 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( invg `  G ) `  W
)  e.  B )
245, 6cmn4 13641 . . . 4  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( ( ( invg `  G ) `
 Z )  e.  B  /\  ( ( invg `  G
) `  W )  e.  B ) )  -> 
( ( X  .+  Y )  .+  (
( ( invg `  G ) `  Z
)  .+  ( ( invg `  G ) `
 W ) ) )  =  ( ( X  .+  ( ( invg `  G
) `  Z )
)  .+  ( Y  .+  ( ( invg `  G ) `  W
) ) ) )
2518, 19, 21, 23, 24syl112anc 1254 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .+  ( (
( invg `  G ) `  Z
)  .+  ( ( invg `  G ) `
 W ) ) )  =  ( ( X  .+  ( ( invg `  G
) `  Z )
)  .+  ( Y  .+  ( ( invg `  G ) `  W
) ) ) )
26 simp1 1000 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e.  Abel )
275, 6, 13ablinvadd 13646 . . . . 5  |-  ( ( G  e.  Abel  /\  Z  e.  B  /\  W  e.  B )  ->  (
( invg `  G ) `  ( Z  .+  W ) )  =  ( ( ( invg `  G
) `  Z )  .+  ( ( invg `  G ) `  W
) ) )
2826, 9, 10, 27syl3anc 1250 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( invg `  G ) `  ( Z  .+  W ) )  =  ( ( ( invg `  G
) `  Z )  .+  ( ( invg `  G ) `  W
) ) )
2928oveq2d 5960 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .+  ( ( invg `  G ) `
 ( Z  .+  W ) ) )  =  ( ( X 
.+  Y )  .+  ( ( ( invg `  G ) `
 Z )  .+  ( ( invg `  G ) `  W
) ) ) )
305, 6, 13, 14grpsubval 13378 . . . . 5  |-  ( ( X  e.  B  /\  Z  e.  B )  ->  ( X  .-  Z
)  =  ( X 
.+  ( ( invg `  G ) `
 Z ) ) )
313, 9, 30syl2anc 411 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( X  .-  Z )  =  ( X  .+  (
( invg `  G ) `  Z
) ) )
325, 6, 13, 14grpsubval 13378 . . . . 5  |-  ( ( Y  e.  B  /\  W  e.  B )  ->  ( Y  .-  W
)  =  ( Y 
.+  ( ( invg `  G ) `
 W ) ) )
334, 10, 32syl2anc 411 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Y  .-  W )  =  ( Y  .+  (
( invg `  G ) `  W
) ) )
3431, 33oveq12d 5962 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .-  Z
)  .+  ( Y  .-  W ) )  =  ( ( X  .+  ( ( invg `  G ) `  Z
) )  .+  ( Y  .+  ( ( invg `  G ) `
 W ) ) ) )
3525, 29, 343eqtr4d 2248 . 2  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .+  ( ( invg `  G ) `
 ( Z  .+  W ) ) )  =  ( ( X 
.-  Z )  .+  ( Y  .-  W ) ) )
3616, 35eqtrd 2238 1  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  W ) )  =  ( ( X  .-  Z )  .+  ( Y  .-  W ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   Grpcgrp 13332   invgcminusg 13333   -gcsg 13334  CMndccmn 13620   Abelcabl 13621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-sbg 13337  df-cmn 13622  df-abl 13623
This theorem is referenced by:  abladdsub4  13650  ablpnpcan  13656
  Copyright terms: Public domain W3C validator