| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablsub4 | Unicode version | ||
| Description: Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| ablsubadd.b |
|
| ablsubadd.p |
|
| ablsubadd.m |
|
| Ref | Expression |
|---|---|
| ablsub4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablgrp 13826 |
. . . . 5
| |
| 2 | 1 | 3ad2ant1 1042 |
. . . 4
|
| 3 | simp2l 1047 |
. . . 4
| |
| 4 | simp2r 1048 |
. . . 4
| |
| 5 | ablsubadd.b |
. . . . 5
| |
| 6 | ablsubadd.p |
. . . . 5
| |
| 7 | 5, 6 | grpcl 13541 |
. . . 4
|
| 8 | 2, 3, 4, 7 | syl3anc 1271 |
. . 3
|
| 9 | simp3l 1049 |
. . . 4
| |
| 10 | simp3r 1050 |
. . . 4
| |
| 11 | 5, 6 | grpcl 13541 |
. . . 4
|
| 12 | 2, 9, 10, 11 | syl3anc 1271 |
. . 3
|
| 13 | eqid 2229 |
. . . 4
| |
| 14 | ablsubadd.m |
. . . 4
| |
| 15 | 5, 6, 13, 14 | grpsubval 13579 |
. . 3
|
| 16 | 8, 12, 15 | syl2anc 411 |
. 2
|
| 17 | ablcmn 13828 |
. . . . 5
| |
| 18 | 17 | 3ad2ant1 1042 |
. . . 4
|
| 19 | simp2 1022 |
. . . 4
| |
| 20 | 5, 13 | grpinvcl 13581 |
. . . . 5
|
| 21 | 2, 9, 20 | syl2anc 411 |
. . . 4
|
| 22 | 5, 13 | grpinvcl 13581 |
. . . . 5
|
| 23 | 2, 10, 22 | syl2anc 411 |
. . . 4
|
| 24 | 5, 6 | cmn4 13842 |
. . . 4
|
| 25 | 18, 19, 21, 23, 24 | syl112anc 1275 |
. . 3
|
| 26 | simp1 1021 |
. . . . 5
| |
| 27 | 5, 6, 13 | ablinvadd 13847 |
. . . . 5
|
| 28 | 26, 9, 10, 27 | syl3anc 1271 |
. . . 4
|
| 29 | 28 | oveq2d 6017 |
. . 3
|
| 30 | 5, 6, 13, 14 | grpsubval 13579 |
. . . . 5
|
| 31 | 3, 9, 30 | syl2anc 411 |
. . . 4
|
| 32 | 5, 6, 13, 14 | grpsubval 13579 |
. . . . 5
|
| 33 | 4, 10, 32 | syl2anc 411 |
. . . 4
|
| 34 | 31, 33 | oveq12d 6019 |
. . 3
|
| 35 | 25, 29, 34 | 3eqtr4d 2272 |
. 2
|
| 36 | 16, 35 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 df-sbg 13538 df-cmn 13823 df-abl 13824 |
| This theorem is referenced by: abladdsub4 13851 ablpnpcan 13857 |
| Copyright terms: Public domain | W3C validator |