ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomi Unicode version

Theorem addcomi 8115
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Hypotheses
Ref Expression
mul.1  |-  A  e.  CC
mul.2  |-  B  e.  CC
Assertion
Ref Expression
addcomi  |-  ( A  +  B )  =  ( B  +  A
)

Proof of Theorem addcomi
StepHypRef Expression
1 mul.1 . 2  |-  A  e.  CC
2 mul.2 . 2  |-  B  e.  CC
3 addcom 8108 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
41, 2, 3mp2an 426 1  |-  ( A  +  B )  =  ( B  +  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1363    e. wcel 2158  (class class class)co 5888   CCcc 7823    + caddc 7828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-addcom 7925
This theorem is referenced by:  addcomli  8116  add42i  8137  mvlladdi  8189  3m1e2  9053  fztpval  10097  fzo0to42pr  10234  ef01bndlem  11778  tangtx  14555  lgsdir2lem2  14726  lgsdir2lem3  14727  lgsdir2lem5  14729
  Copyright terms: Public domain W3C validator