ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomi Unicode version

Theorem addcomi 8187
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Hypotheses
Ref Expression
mul.1  |-  A  e.  CC
mul.2  |-  B  e.  CC
Assertion
Ref Expression
addcomi  |-  ( A  +  B )  =  ( B  +  A
)

Proof of Theorem addcomi
StepHypRef Expression
1 mul.1 . 2  |-  A  e.  CC
2 mul.2 . 2  |-  B  e.  CC
3 addcom 8180 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
41, 2, 3mp2an 426 1  |-  ( A  +  B )  =  ( B  +  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7894    + caddc 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-addcom 7996
This theorem is referenced by:  addcomli  8188  add42i  8209  mvlladdi  8261  3m1e2  9127  fztpval  10175  fzo0to42pr  10313  ef01bndlem  11938  modxai  12610  tangtx  15158  lgsdir2lem2  15354  lgsdir2lem3  15355  lgsdir2lem5  15357
  Copyright terms: Public domain W3C validator