ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomi GIF version

Theorem addcomi 8223
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Hypotheses
Ref Expression
mul.1 𝐴 ∈ ℂ
mul.2 𝐵 ∈ ℂ
Assertion
Ref Expression
addcomi (𝐴 + 𝐵) = (𝐵 + 𝐴)

Proof of Theorem addcomi
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 mul.2 . 2 𝐵 ∈ ℂ
3 addcom 8216 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
41, 2, 3mp2an 426 1 (𝐴 + 𝐵) = (𝐵 + 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  (class class class)co 5951  cc 7930   + caddc 7935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-addcom 8032
This theorem is referenced by:  addcomli  8224  add42i  8245  mvlladdi  8297  3m1e2  9163  fztpval  10212  fzo0to42pr  10356  ef01bndlem  12111  modxai  12783  tangtx  15354  lgsdir2lem2  15550  lgsdir2lem3  15551  lgsdir2lem5  15553
  Copyright terms: Public domain W3C validator