| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomi | GIF version | ||
| Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| mul.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| addcomi | ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mul.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | addcom 8216 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 + caddc 7935 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcom 8032 |
| This theorem is referenced by: addcomli 8224 add42i 8245 mvlladdi 8297 3m1e2 9163 fztpval 10212 fzo0to42pr 10356 ef01bndlem 12111 modxai 12783 tangtx 15354 lgsdir2lem2 15550 lgsdir2lem3 15551 lgsdir2lem5 15553 |
| Copyright terms: Public domain | W3C validator |