ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomi GIF version

Theorem addcomi 8165
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Hypotheses
Ref Expression
mul.1 𝐴 ∈ ℂ
mul.2 𝐵 ∈ ℂ
Assertion
Ref Expression
addcomi (𝐴 + 𝐵) = (𝐵 + 𝐴)

Proof of Theorem addcomi
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 mul.2 . 2 𝐵 ∈ ℂ
3 addcom 8158 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
41, 2, 3mp2an 426 1 (𝐴 + 𝐵) = (𝐵 + 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  (class class class)co 5919  cc 7872   + caddc 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-addcom 7974
This theorem is referenced by:  addcomli  8166  add42i  8187  mvlladdi  8239  3m1e2  9104  fztpval  10152  fzo0to42pr  10290  ef01bndlem  11902  tangtx  15014  lgsdir2lem2  15186  lgsdir2lem3  15187  lgsdir2lem5  15189
  Copyright terms: Public domain W3C validator