ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomi GIF version

Theorem addcomi 8298
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Hypotheses
Ref Expression
mul.1 𝐴 ∈ ℂ
mul.2 𝐵 ∈ ℂ
Assertion
Ref Expression
addcomi (𝐴 + 𝐵) = (𝐵 + 𝐴)

Proof of Theorem addcomi
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 mul.2 . 2 𝐵 ∈ ℂ
3 addcom 8291 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
41, 2, 3mp2an 426 1 (𝐴 + 𝐵) = (𝐵 + 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  (class class class)co 6007  cc 8005   + caddc 8010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-addcom 8107
This theorem is referenced by:  addcomli  8299  add42i  8320  mvlladdi  8372  3m1e2  9238  fztpval  10287  fzo0to42pr  10434  ef01bndlem  12275  modxai  12947  tangtx  15520  lgsdir2lem2  15716  lgsdir2lem3  15717  lgsdir2lem5  15719
  Copyright terms: Public domain W3C validator