Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcomi | GIF version |
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
addcomi | ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mul.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | addcom 8056 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
4 | 1, 2, 3 | mp2an 424 | 1 ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 ax-addcom 7874 |
This theorem is referenced by: addcomli 8064 add42i 8085 mvlladdi 8137 3m1e2 8998 fztpval 10039 fzo0to42pr 10176 ef01bndlem 11719 tangtx 13553 lgsdir2lem2 13724 lgsdir2lem3 13725 lgsdir2lem5 13727 |
Copyright terms: Public domain | W3C validator |