ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add42i Unicode version

Theorem add42i 8064
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
Hypotheses
Ref Expression
add.1  |-  A  e.  CC
add.2  |-  B  e.  CC
add.3  |-  C  e.  CC
add4.4  |-  D  e.  CC
Assertion
Ref Expression
add42i  |-  ( ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( D  +  B ) )

Proof of Theorem add42i
StepHypRef Expression
1 add.1 . . 3  |-  A  e.  CC
2 add.2 . . 3  |-  B  e.  CC
3 add.3 . . 3  |-  C  e.  CC
4 add4.4 . . 3  |-  D  e.  CC
51, 2, 3, 4add4i 8063 . 2  |-  ( ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( B  +  D ) )
62, 4addcomi 8042 . . 3  |-  ( B  +  D )  =  ( D  +  B
)
76oveq2i 5853 . 2  |-  ( ( A  +  C )  +  ( B  +  D ) )  =  ( ( A  +  C )  +  ( D  +  B ) )
85, 7eqtri 2186 1  |-  ( ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( D  +  B ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136  (class class class)co 5842   CCcc 7751    + caddc 7756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-addcl 7849  ax-addcom 7853  ax-addass 7855
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator