ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add42i Unicode version

Theorem add42i 8238
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
Hypotheses
Ref Expression
add.1  |-  A  e.  CC
add.2  |-  B  e.  CC
add.3  |-  C  e.  CC
add4.4  |-  D  e.  CC
Assertion
Ref Expression
add42i  |-  ( ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( D  +  B ) )

Proof of Theorem add42i
StepHypRef Expression
1 add.1 . . 3  |-  A  e.  CC
2 add.2 . . 3  |-  B  e.  CC
3 add.3 . . 3  |-  C  e.  CC
4 add4.4 . . 3  |-  D  e.  CC
51, 2, 3, 4add4i 8237 . 2  |-  ( ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( B  +  D ) )
62, 4addcomi 8216 . . 3  |-  ( B  +  D )  =  ( D  +  B
)
76oveq2i 5955 . 2  |-  ( ( A  +  C )  +  ( B  +  D ) )  =  ( ( A  +  C )  +  ( D  +  B ) )
85, 7eqtri 2226 1  |-  ( ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( D  +  B ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176  (class class class)co 5944   CCcc 7923    + caddc 7928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-addcl 8021  ax-addcom 8025  ax-addass 8027
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator