ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add42i Unicode version

Theorem add42i 8185
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
Hypotheses
Ref Expression
add.1  |-  A  e.  CC
add.2  |-  B  e.  CC
add.3  |-  C  e.  CC
add4.4  |-  D  e.  CC
Assertion
Ref Expression
add42i  |-  ( ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( D  +  B ) )

Proof of Theorem add42i
StepHypRef Expression
1 add.1 . . 3  |-  A  e.  CC
2 add.2 . . 3  |-  B  e.  CC
3 add.3 . . 3  |-  C  e.  CC
4 add4.4 . . 3  |-  D  e.  CC
51, 2, 3, 4add4i 8184 . 2  |-  ( ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( B  +  D ) )
62, 4addcomi 8163 . . 3  |-  ( B  +  D )  =  ( D  +  B
)
76oveq2i 5929 . 2  |-  ( ( A  +  C )  +  ( B  +  D ) )  =  ( ( A  +  C )  +  ( D  +  B ) )
85, 7eqtri 2214 1  |-  ( ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( D  +  B ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164  (class class class)co 5918   CCcc 7870    + caddc 7875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-addcl 7968  ax-addcom 7972  ax-addass 7974
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator