![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > add42i | Unicode version |
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
add.1 |
![]() ![]() ![]() ![]() |
add.2 |
![]() ![]() ![]() ![]() |
add.3 |
![]() ![]() ![]() ![]() |
add4.4 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
add42i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | add.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | add.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | add.3 |
. . 3
![]() ![]() ![]() ![]() | |
4 | add4.4 |
. . 3
![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | add4i 8096 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2, 4 | addcomi 8075 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | oveq2i 5876 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 5, 7 | eqtri 2196 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-addcl 7882 ax-addcom 7886 ax-addass 7888 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |