| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsdir2lem3 | Unicode version | ||
| Description: Lemma for lgsdir2 15452. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgsdir2lem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | 8nn 9203 |
. . . 4
| |
| 3 | zmodfz 10489 |
. . . 4
| |
| 4 | 1, 2, 3 | sylancl 413 |
. . 3
|
| 5 | 8m1e7 9160 |
. . . 4
| |
| 6 | 5 | oveq2i 5954 |
. . 3
|
| 7 | 4, 6 | eleqtrdi 2297 |
. 2
|
| 8 | neg1z 9403 |
. . . . . . . 8
| |
| 9 | z0even 12164 |
. . . . . . . . 9
| |
| 10 | 1pneg1e0 9146 |
. . . . . . . . . 10
| |
| 11 | ax-1cn 8017 |
. . . . . . . . . . 11
| |
| 12 | neg1cn 9140 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | addcomi 8215 |
. . . . . . . . . 10
|
| 14 | 10, 13 | eqtr3i 2227 |
. . . . . . . . 9
|
| 15 | 9, 14 | breqtri 4068 |
. . . . . . . 8
|
| 16 | noel 3463 |
. . . . . . . . . . 11
| |
| 17 | 16 | pm2.21i 647 |
. . . . . . . . . 10
|
| 18 | neg1lt0 9143 |
. . . . . . . . . . 11
| |
| 19 | 0z 9382 |
. . . . . . . . . . . 12
| |
| 20 | fzn 10163 |
. . . . . . . . . . . 12
| |
| 21 | 19, 8, 20 | mp2an 426 |
. . . . . . . . . . 11
|
| 22 | 18, 21 | mpbi 145 |
. . . . . . . . . 10
|
| 23 | 17, 22 | eleq2s 2299 |
. . . . . . . . 9
|
| 24 | 23 | a1i 9 |
. . . . . . . 8
|
| 25 | 8, 15, 24 | 3pm3.2i 1177 |
. . . . . . 7
|
| 26 | 1e0p1 9544 |
. . . . . . 7
| |
| 27 | ssun1 3335 |
. . . . . . . 8
| |
| 28 | 1ex 8066 |
. . . . . . . . 9
| |
| 29 | 28 | prid1 3738 |
. . . . . . . 8
|
| 30 | 27, 29 | sselii 3189 |
. . . . . . 7
|
| 31 | 25, 14, 26, 30 | lgsdir2lem2 15448 |
. . . . . 6
|
| 32 | df-2 9094 |
. . . . . 6
| |
| 33 | df-3 9095 |
. . . . . 6
| |
| 34 | ssun2 3336 |
. . . . . . 7
| |
| 35 | 3ex 9111 |
. . . . . . . 8
| |
| 36 | 35 | prid1 3738 |
. . . . . . 7
|
| 37 | 34, 36 | sselii 3189 |
. . . . . 6
|
| 38 | 31, 32, 33, 37 | lgsdir2lem2 15448 |
. . . . 5
|
| 39 | df-4 9096 |
. . . . 5
| |
| 40 | df-5 9097 |
. . . . 5
| |
| 41 | 5nn 9200 |
. . . . . . . 8
| |
| 42 | 41 | elexi 2783 |
. . . . . . 7
|
| 43 | 42 | prid2 3739 |
. . . . . 6
|
| 44 | 34, 43 | sselii 3189 |
. . . . 5
|
| 45 | 38, 39, 40, 44 | lgsdir2lem2 15448 |
. . . 4
|
| 46 | df-6 9098 |
. . . 4
| |
| 47 | df-7 9099 |
. . . 4
| |
| 48 | 7nn 9202 |
. . . . . . 7
| |
| 49 | 48 | elexi 2783 |
. . . . . 6
|
| 50 | 49 | prid2 3739 |
. . . . 5
|
| 51 | 27, 50 | sselii 3189 |
. . . 4
|
| 52 | 45, 46, 47, 51 | lgsdir2lem2 15448 |
. . 3
|
| 53 | 52 | simp3i 1010 |
. 2
|
| 54 | 7, 53 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fz 10130 df-fl 10411 df-mod 10466 df-dvds 12041 |
| This theorem is referenced by: lgsdir2 15452 2lgslem3 15520 2lgsoddprmlem3 15530 |
| Copyright terms: Public domain | W3C validator |