ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem3 Unicode version

Theorem lgsdir2lem3 15146
Description: Lemma for lgsdir2 15149. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem3  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )

Proof of Theorem lgsdir2lem3
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  A  e.  ZZ )
2 8nn 9149 . . . 4  |-  8  e.  NN
3 zmodfz 10417 . . . 4  |-  ( ( A  e.  ZZ  /\  8  e.  NN )  ->  ( A  mod  8
)  e.  ( 0 ... ( 8  -  1 ) ) )
41, 2, 3sylancl 413 . . 3  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( 0 ... ( 8  -  1 ) ) )
5 8m1e7 9107 . . . 4  |-  ( 8  -  1 )  =  7
65oveq2i 5929 . . 3  |-  ( 0 ... ( 8  -  1 ) )  =  ( 0 ... 7
)
74, 6eleqtrdi 2286 . 2  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( 0 ... 7 ) )
8 neg1z 9349 . . . . . . . 8  |-  -u 1  e.  ZZ
9 z0even 12052 . . . . . . . . 9  |-  2  ||  0
10 1pneg1e0 9093 . . . . . . . . . 10  |-  ( 1  +  -u 1 )  =  0
11 ax-1cn 7965 . . . . . . . . . . 11  |-  1  e.  CC
12 neg1cn 9087 . . . . . . . . . . 11  |-  -u 1  e.  CC
1311, 12addcomi 8163 . . . . . . . . . 10  |-  ( 1  +  -u 1 )  =  ( -u 1  +  1 )
1410, 13eqtr3i 2216 . . . . . . . . 9  |-  0  =  ( -u 1  +  1 )
159, 14breqtri 4054 . . . . . . . 8  |-  2  ||  ( -u 1  +  1 )
16 noel 3450 . . . . . . . . . . 11  |-  -.  ( A  mod  8 )  e.  (/)
1716pm2.21i 647 . . . . . . . . . 10  |-  ( ( A  mod  8 )  e.  (/)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
18 neg1lt0 9090 . . . . . . . . . . 11  |-  -u 1  <  0
19 0z 9328 . . . . . . . . . . . 12  |-  0  e.  ZZ
20 fzn 10108 . . . . . . . . . . . 12  |-  ( ( 0  e.  ZZ  /\  -u 1  e.  ZZ )  ->  ( -u 1  <  0  <->  ( 0 ... -u 1 )  =  (/) ) )
2119, 8, 20mp2an 426 . . . . . . . . . . 11  |-  ( -u
1  <  0  <->  ( 0 ... -u 1 )  =  (/) )
2218, 21mpbi 145 . . . . . . . . . 10  |-  ( 0 ... -u 1 )  =  (/)
2317, 22eleq2s 2288 . . . . . . . . 9  |-  ( ( A  mod  8 )  e.  ( 0 ... -u 1 )  -> 
( A  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
2423a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... -u 1
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
258, 15, 243pm3.2i 1177 . . . . . . 7  |-  ( -u
1  e.  ZZ  /\  2  ||  ( -u 1  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  (
( A  mod  8
)  e.  ( 0 ... -u 1 )  -> 
( A  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
26 1e0p1 9489 . . . . . . 7  |-  1  =  ( 0  +  1 )
27 ssun1 3322 . . . . . . . 8  |-  { 1 ,  7 }  C_  ( { 1 ,  7 }  u.  { 3 ,  5 } )
28 1ex 8014 . . . . . . . . 9  |-  1  e.  _V
2928prid1 3724 . . . . . . . 8  |-  1  e.  { 1 ,  7 }
3027, 29sselii 3176 . . . . . . 7  |-  1  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
3125, 14, 26, 30lgsdir2lem2 15145 . . . . . 6  |-  ( 1  e.  ZZ  /\  2  ||  ( 1  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 1
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
32 df-2 9041 . . . . . 6  |-  2  =  ( 1  +  1 )
33 df-3 9042 . . . . . 6  |-  3  =  ( 2  +  1 )
34 ssun2 3323 . . . . . . 7  |-  { 3 ,  5 }  C_  ( { 1 ,  7 }  u.  { 3 ,  5 } )
35 3ex 9058 . . . . . . . 8  |-  3  e.  _V
3635prid1 3724 . . . . . . 7  |-  3  e.  { 3 ,  5 }
3734, 36sselii 3176 . . . . . 6  |-  3  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
3831, 32, 33, 37lgsdir2lem2 15145 . . . . 5  |-  ( 3  e.  ZZ  /\  2  ||  ( 3  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 3
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
39 df-4 9043 . . . . 5  |-  4  =  ( 3  +  1 )
40 df-5 9044 . . . . 5  |-  5  =  ( 4  +  1 )
41 5nn 9146 . . . . . . . 8  |-  5  e.  NN
4241elexi 2772 . . . . . . 7  |-  5  e.  _V
4342prid2 3725 . . . . . 6  |-  5  e.  { 3 ,  5 }
4434, 43sselii 3176 . . . . 5  |-  5  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
4538, 39, 40, 44lgsdir2lem2 15145 . . . 4  |-  ( 5  e.  ZZ  /\  2  ||  ( 5  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 5
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
46 df-6 9045 . . . 4  |-  6  =  ( 5  +  1 )
47 df-7 9046 . . . 4  |-  7  =  ( 6  +  1 )
48 7nn 9148 . . . . . . 7  |-  7  e.  NN
4948elexi 2772 . . . . . 6  |-  7  e.  _V
5049prid2 3725 . . . . 5  |-  7  e.  { 1 ,  7 }
5127, 50sselii 3176 . . . 4  |-  7  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
5245, 46, 47, 51lgsdir2lem2 15145 . . 3  |-  ( 7  e.  ZZ  /\  2  ||  ( 7  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 7
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
5352simp3i 1010 . 2  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 7
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
547, 53mpd 13 1  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    u. cun 3151   (/)c0 3446   {cpr 3619   class class class wbr 4029  (class class class)co 5918   0cc0 7872   1c1 7873    + caddc 7875    < clt 8054    - cmin 8190   -ucneg 8191   NNcn 8982   2c2 9033   3c3 9034   4c4 9035   5c5 9036   6c6 9037   7c7 9038   8c8 9039   ZZcz 9317   ...cfz 10074    mod cmo 10393    || cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fl 10339  df-mod 10394  df-dvds 11931
This theorem is referenced by:  lgsdir2  15149  2lgsoddprmlem3  15199
  Copyright terms: Public domain W3C validator