ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem3 Unicode version

Theorem lgsdir2lem3 15592
Description: Lemma for lgsdir2 15595. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem3  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )

Proof of Theorem lgsdir2lem3
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  A  e.  ZZ )
2 8nn 9234 . . . 4  |-  8  e.  NN
3 zmodfz 10523 . . . 4  |-  ( ( A  e.  ZZ  /\  8  e.  NN )  ->  ( A  mod  8
)  e.  ( 0 ... ( 8  -  1 ) ) )
41, 2, 3sylancl 413 . . 3  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( 0 ... ( 8  -  1 ) ) )
5 8m1e7 9191 . . . 4  |-  ( 8  -  1 )  =  7
65oveq2i 5973 . . 3  |-  ( 0 ... ( 8  -  1 ) )  =  ( 0 ... 7
)
74, 6eleqtrdi 2299 . 2  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( 0 ... 7 ) )
8 neg1z 9434 . . . . . . . 8  |-  -u 1  e.  ZZ
9 z0even 12307 . . . . . . . . 9  |-  2  ||  0
10 1pneg1e0 9177 . . . . . . . . . 10  |-  ( 1  +  -u 1 )  =  0
11 ax-1cn 8048 . . . . . . . . . . 11  |-  1  e.  CC
12 neg1cn 9171 . . . . . . . . . . 11  |-  -u 1  e.  CC
1311, 12addcomi 8246 . . . . . . . . . 10  |-  ( 1  +  -u 1 )  =  ( -u 1  +  1 )
1410, 13eqtr3i 2229 . . . . . . . . 9  |-  0  =  ( -u 1  +  1 )
159, 14breqtri 4079 . . . . . . . 8  |-  2  ||  ( -u 1  +  1 )
16 noel 3468 . . . . . . . . . . 11  |-  -.  ( A  mod  8 )  e.  (/)
1716pm2.21i 647 . . . . . . . . . 10  |-  ( ( A  mod  8 )  e.  (/)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
18 neg1lt0 9174 . . . . . . . . . . 11  |-  -u 1  <  0
19 0z 9413 . . . . . . . . . . . 12  |-  0  e.  ZZ
20 fzn 10194 . . . . . . . . . . . 12  |-  ( ( 0  e.  ZZ  /\  -u 1  e.  ZZ )  ->  ( -u 1  <  0  <->  ( 0 ... -u 1 )  =  (/) ) )
2119, 8, 20mp2an 426 . . . . . . . . . . 11  |-  ( -u
1  <  0  <->  ( 0 ... -u 1 )  =  (/) )
2218, 21mpbi 145 . . . . . . . . . 10  |-  ( 0 ... -u 1 )  =  (/)
2317, 22eleq2s 2301 . . . . . . . . 9  |-  ( ( A  mod  8 )  e.  ( 0 ... -u 1 )  -> 
( A  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
2423a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... -u 1
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
258, 15, 243pm3.2i 1178 . . . . . . 7  |-  ( -u
1  e.  ZZ  /\  2  ||  ( -u 1  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  (
( A  mod  8
)  e.  ( 0 ... -u 1 )  -> 
( A  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
26 1e0p1 9575 . . . . . . 7  |-  1  =  ( 0  +  1 )
27 ssun1 3340 . . . . . . . 8  |-  { 1 ,  7 }  C_  ( { 1 ,  7 }  u.  { 3 ,  5 } )
28 1ex 8097 . . . . . . . . 9  |-  1  e.  _V
2928prid1 3744 . . . . . . . 8  |-  1  e.  { 1 ,  7 }
3027, 29sselii 3194 . . . . . . 7  |-  1  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
3125, 14, 26, 30lgsdir2lem2 15591 . . . . . 6  |-  ( 1  e.  ZZ  /\  2  ||  ( 1  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 1
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
32 df-2 9125 . . . . . 6  |-  2  =  ( 1  +  1 )
33 df-3 9126 . . . . . 6  |-  3  =  ( 2  +  1 )
34 ssun2 3341 . . . . . . 7  |-  { 3 ,  5 }  C_  ( { 1 ,  7 }  u.  { 3 ,  5 } )
35 3ex 9142 . . . . . . . 8  |-  3  e.  _V
3635prid1 3744 . . . . . . 7  |-  3  e.  { 3 ,  5 }
3734, 36sselii 3194 . . . . . 6  |-  3  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
3831, 32, 33, 37lgsdir2lem2 15591 . . . . 5  |-  ( 3  e.  ZZ  /\  2  ||  ( 3  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 3
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
39 df-4 9127 . . . . 5  |-  4  =  ( 3  +  1 )
40 df-5 9128 . . . . 5  |-  5  =  ( 4  +  1 )
41 5nn 9231 . . . . . . . 8  |-  5  e.  NN
4241elexi 2786 . . . . . . 7  |-  5  e.  _V
4342prid2 3745 . . . . . 6  |-  5  e.  { 3 ,  5 }
4434, 43sselii 3194 . . . . 5  |-  5  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
4538, 39, 40, 44lgsdir2lem2 15591 . . . 4  |-  ( 5  e.  ZZ  /\  2  ||  ( 5  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 5
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
46 df-6 9129 . . . 4  |-  6  =  ( 5  +  1 )
47 df-7 9130 . . . 4  |-  7  =  ( 6  +  1 )
48 7nn 9233 . . . . . . 7  |-  7  e.  NN
4948elexi 2786 . . . . . 6  |-  7  e.  _V
5049prid2 3745 . . . . 5  |-  7  e.  { 1 ,  7 }
5127, 50sselii 3194 . . . 4  |-  7  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
5245, 46, 47, 51lgsdir2lem2 15591 . . 3  |-  ( 7  e.  ZZ  /\  2  ||  ( 7  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 7
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
5352simp3i 1011 . 2  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 7
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
547, 53mpd 13 1  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177    u. cun 3168   (/)c0 3464   {cpr 3639   class class class wbr 4054  (class class class)co 5962   0cc0 7955   1c1 7956    + caddc 7958    < clt 8137    - cmin 8273   -ucneg 8274   NNcn 9066   2c2 9117   3c3 9118   4c4 9119   5c5 9120   6c6 9121   7c7 9122   8c8 9123   ZZcz 9402   ...cfz 10160    mod cmo 10499    || cdvds 12183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-po 4356  df-iso 4357  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-7 9130  df-8 9131  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-fz 10161  df-fl 10445  df-mod 10500  df-dvds 12184
This theorem is referenced by:  lgsdir2  15595  2lgslem3  15663  2lgsoddprmlem3  15673
  Copyright terms: Public domain W3C validator