ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem3 Unicode version

Theorem lgsdir2lem3 15703
Description: Lemma for lgsdir2 15706. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem3  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )

Proof of Theorem lgsdir2lem3
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  A  e.  ZZ )
2 8nn 9274 . . . 4  |-  8  e.  NN
3 zmodfz 10563 . . . 4  |-  ( ( A  e.  ZZ  /\  8  e.  NN )  ->  ( A  mod  8
)  e.  ( 0 ... ( 8  -  1 ) ) )
41, 2, 3sylancl 413 . . 3  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( 0 ... ( 8  -  1 ) ) )
5 8m1e7 9231 . . . 4  |-  ( 8  -  1 )  =  7
65oveq2i 6011 . . 3  |-  ( 0 ... ( 8  -  1 ) )  =  ( 0 ... 7
)
74, 6eleqtrdi 2322 . 2  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( 0 ... 7 ) )
8 neg1z 9474 . . . . . . . 8  |-  -u 1  e.  ZZ
9 z0even 12417 . . . . . . . . 9  |-  2  ||  0
10 1pneg1e0 9217 . . . . . . . . . 10  |-  ( 1  +  -u 1 )  =  0
11 ax-1cn 8088 . . . . . . . . . . 11  |-  1  e.  CC
12 neg1cn 9211 . . . . . . . . . . 11  |-  -u 1  e.  CC
1311, 12addcomi 8286 . . . . . . . . . 10  |-  ( 1  +  -u 1 )  =  ( -u 1  +  1 )
1410, 13eqtr3i 2252 . . . . . . . . 9  |-  0  =  ( -u 1  +  1 )
159, 14breqtri 4107 . . . . . . . 8  |-  2  ||  ( -u 1  +  1 )
16 noel 3495 . . . . . . . . . . 11  |-  -.  ( A  mod  8 )  e.  (/)
1716pm2.21i 649 . . . . . . . . . 10  |-  ( ( A  mod  8 )  e.  (/)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
18 neg1lt0 9214 . . . . . . . . . . 11  |-  -u 1  <  0
19 0z 9453 . . . . . . . . . . . 12  |-  0  e.  ZZ
20 fzn 10234 . . . . . . . . . . . 12  |-  ( ( 0  e.  ZZ  /\  -u 1  e.  ZZ )  ->  ( -u 1  <  0  <->  ( 0 ... -u 1 )  =  (/) ) )
2119, 8, 20mp2an 426 . . . . . . . . . . 11  |-  ( -u
1  <  0  <->  ( 0 ... -u 1 )  =  (/) )
2218, 21mpbi 145 . . . . . . . . . 10  |-  ( 0 ... -u 1 )  =  (/)
2317, 22eleq2s 2324 . . . . . . . . 9  |-  ( ( A  mod  8 )  e.  ( 0 ... -u 1 )  -> 
( A  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
2423a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... -u 1
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
258, 15, 243pm3.2i 1199 . . . . . . 7  |-  ( -u
1  e.  ZZ  /\  2  ||  ( -u 1  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  (
( A  mod  8
)  e.  ( 0 ... -u 1 )  -> 
( A  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
26 1e0p1 9615 . . . . . . 7  |-  1  =  ( 0  +  1 )
27 ssun1 3367 . . . . . . . 8  |-  { 1 ,  7 }  C_  ( { 1 ,  7 }  u.  { 3 ,  5 } )
28 1ex 8137 . . . . . . . . 9  |-  1  e.  _V
2928prid1 3772 . . . . . . . 8  |-  1  e.  { 1 ,  7 }
3027, 29sselii 3221 . . . . . . 7  |-  1  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
3125, 14, 26, 30lgsdir2lem2 15702 . . . . . 6  |-  ( 1  e.  ZZ  /\  2  ||  ( 1  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 1
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
32 df-2 9165 . . . . . 6  |-  2  =  ( 1  +  1 )
33 df-3 9166 . . . . . 6  |-  3  =  ( 2  +  1 )
34 ssun2 3368 . . . . . . 7  |-  { 3 ,  5 }  C_  ( { 1 ,  7 }  u.  { 3 ,  5 } )
35 3ex 9182 . . . . . . . 8  |-  3  e.  _V
3635prid1 3772 . . . . . . 7  |-  3  e.  { 3 ,  5 }
3734, 36sselii 3221 . . . . . 6  |-  3  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
3831, 32, 33, 37lgsdir2lem2 15702 . . . . 5  |-  ( 3  e.  ZZ  /\  2  ||  ( 3  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 3
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
39 df-4 9167 . . . . 5  |-  4  =  ( 3  +  1 )
40 df-5 9168 . . . . 5  |-  5  =  ( 4  +  1 )
41 5nn 9271 . . . . . . . 8  |-  5  e.  NN
4241elexi 2812 . . . . . . 7  |-  5  e.  _V
4342prid2 3773 . . . . . 6  |-  5  e.  { 3 ,  5 }
4434, 43sselii 3221 . . . . 5  |-  5  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
4538, 39, 40, 44lgsdir2lem2 15702 . . . 4  |-  ( 5  e.  ZZ  /\  2  ||  ( 5  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 5
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
46 df-6 9169 . . . 4  |-  6  =  ( 5  +  1 )
47 df-7 9170 . . . 4  |-  7  =  ( 6  +  1 )
48 7nn 9273 . . . . . . 7  |-  7  e.  NN
4948elexi 2812 . . . . . 6  |-  7  e.  _V
5049prid2 3773 . . . . 5  |-  7  e.  { 1 ,  7 }
5127, 50sselii 3221 . . . 4  |-  7  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
5245, 46, 47, 51lgsdir2lem2 15702 . . 3  |-  ( 7  e.  ZZ  /\  2  ||  ( 7  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 7
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
5352simp3i 1032 . 2  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 7
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
547, 53mpd 13 1  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    u. cun 3195   (/)c0 3491   {cpr 3667   class class class wbr 4082  (class class class)co 6000   0cc0 7995   1c1 7996    + caddc 7998    < clt 8177    - cmin 8313   -ucneg 8314   NNcn 9106   2c2 9157   3c3 9158   4c4 9159   5c5 9160   6c6 9161   7c7 9162   8c8 9163   ZZcz 9442   ...cfz 10200    mod cmo 10539    || cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fl 10485  df-mod 10540  df-dvds 12294
This theorem is referenced by:  lgsdir2  15706  2lgslem3  15774  2lgsoddprmlem3  15784
  Copyright terms: Public domain W3C validator