ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem3 Unicode version

Theorem lgsdir2lem3 14098
Description: Lemma for lgsdir2 14101. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem3  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )

Proof of Theorem lgsdir2lem3
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  A  e.  ZZ )
2 8nn 9075 . . . 4  |-  8  e.  NN
3 zmodfz 10332 . . . 4  |-  ( ( A  e.  ZZ  /\  8  e.  NN )  ->  ( A  mod  8
)  e.  ( 0 ... ( 8  -  1 ) ) )
41, 2, 3sylancl 413 . . 3  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( 0 ... ( 8  -  1 ) ) )
5 8m1e7 9033 . . . 4  |-  ( 8  -  1 )  =  7
65oveq2i 5880 . . 3  |-  ( 0 ... ( 8  -  1 ) )  =  ( 0 ... 7
)
74, 6eleqtrdi 2270 . 2  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( 0 ... 7 ) )
8 neg1z 9274 . . . . . . . 8  |-  -u 1  e.  ZZ
9 z0even 11899 . . . . . . . . 9  |-  2  ||  0
10 1pneg1e0 9019 . . . . . . . . . 10  |-  ( 1  +  -u 1 )  =  0
11 ax-1cn 7895 . . . . . . . . . . 11  |-  1  e.  CC
12 neg1cn 9013 . . . . . . . . . . 11  |-  -u 1  e.  CC
1311, 12addcomi 8091 . . . . . . . . . 10  |-  ( 1  +  -u 1 )  =  ( -u 1  +  1 )
1410, 13eqtr3i 2200 . . . . . . . . 9  |-  0  =  ( -u 1  +  1 )
159, 14breqtri 4025 . . . . . . . 8  |-  2  ||  ( -u 1  +  1 )
16 noel 3426 . . . . . . . . . . 11  |-  -.  ( A  mod  8 )  e.  (/)
1716pm2.21i 646 . . . . . . . . . 10  |-  ( ( A  mod  8 )  e.  (/)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
18 neg1lt0 9016 . . . . . . . . . . 11  |-  -u 1  <  0
19 0z 9253 . . . . . . . . . . . 12  |-  0  e.  ZZ
20 fzn 10028 . . . . . . . . . . . 12  |-  ( ( 0  e.  ZZ  /\  -u 1  e.  ZZ )  ->  ( -u 1  <  0  <->  ( 0 ... -u 1 )  =  (/) ) )
2119, 8, 20mp2an 426 . . . . . . . . . . 11  |-  ( -u
1  <  0  <->  ( 0 ... -u 1 )  =  (/) )
2218, 21mpbi 145 . . . . . . . . . 10  |-  ( 0 ... -u 1 )  =  (/)
2317, 22eleq2s 2272 . . . . . . . . 9  |-  ( ( A  mod  8 )  e.  ( 0 ... -u 1 )  -> 
( A  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
2423a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... -u 1
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
258, 15, 243pm3.2i 1175 . . . . . . 7  |-  ( -u
1  e.  ZZ  /\  2  ||  ( -u 1  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  (
( A  mod  8
)  e.  ( 0 ... -u 1 )  -> 
( A  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
26 1e0p1 9414 . . . . . . 7  |-  1  =  ( 0  +  1 )
27 ssun1 3298 . . . . . . . 8  |-  { 1 ,  7 }  C_  ( { 1 ,  7 }  u.  { 3 ,  5 } )
28 1ex 7943 . . . . . . . . 9  |-  1  e.  _V
2928prid1 3697 . . . . . . . 8  |-  1  e.  { 1 ,  7 }
3027, 29sselii 3152 . . . . . . 7  |-  1  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
3125, 14, 26, 30lgsdir2lem2 14097 . . . . . 6  |-  ( 1  e.  ZZ  /\  2  ||  ( 1  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 1
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
32 df-2 8967 . . . . . 6  |-  2  =  ( 1  +  1 )
33 df-3 8968 . . . . . 6  |-  3  =  ( 2  +  1 )
34 ssun2 3299 . . . . . . 7  |-  { 3 ,  5 }  C_  ( { 1 ,  7 }  u.  { 3 ,  5 } )
35 3ex 8984 . . . . . . . 8  |-  3  e.  _V
3635prid1 3697 . . . . . . 7  |-  3  e.  { 3 ,  5 }
3734, 36sselii 3152 . . . . . 6  |-  3  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
3831, 32, 33, 37lgsdir2lem2 14097 . . . . 5  |-  ( 3  e.  ZZ  /\  2  ||  ( 3  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 3
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
39 df-4 8969 . . . . 5  |-  4  =  ( 3  +  1 )
40 df-5 8970 . . . . 5  |-  5  =  ( 4  +  1 )
41 5nn 9072 . . . . . . . 8  |-  5  e.  NN
4241elexi 2749 . . . . . . 7  |-  5  e.  _V
4342prid2 3698 . . . . . 6  |-  5  e.  { 3 ,  5 }
4434, 43sselii 3152 . . . . 5  |-  5  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
4538, 39, 40, 44lgsdir2lem2 14097 . . . 4  |-  ( 5  e.  ZZ  /\  2  ||  ( 5  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 5
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
46 df-6 8971 . . . 4  |-  6  =  ( 5  +  1 )
47 df-7 8972 . . . 4  |-  7  =  ( 6  +  1 )
48 7nn 9074 . . . . . . 7  |-  7  e.  NN
4948elexi 2749 . . . . . 6  |-  7  e.  _V
5049prid2 3698 . . . . 5  |-  7  e.  { 1 ,  7 }
5127, 50sselii 3152 . . . 4  |-  7  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
5245, 46, 47, 51lgsdir2lem2 14097 . . 3  |-  ( 7  e.  ZZ  /\  2  ||  ( 7  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 7
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
5352simp3i 1008 . 2  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 7
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
547, 53mpd 13 1  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    u. cun 3127   (/)c0 3422   {cpr 3592   class class class wbr 4000  (class class class)co 5869   0cc0 7802   1c1 7803    + caddc 7805    < clt 7982    - cmin 8118   -ucneg 8119   NNcn 8908   2c2 8959   3c3 8960   4c4 8961   5c5 8962   6c6 8963   7c7 8964   8c8 8965   ZZcz 9242   ...cfz 9995    mod cmo 10308    || cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fl 10256  df-mod 10309  df-dvds 11779
This theorem is referenced by:  lgsdir2  14101
  Copyright terms: Public domain W3C validator