ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem3 Unicode version

Theorem lgsdir2lem3 13725
Description: Lemma for lgsdir2 13728. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem3  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )

Proof of Theorem lgsdir2lem3
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  A  e.  ZZ )
2 8nn 9045 . . . 4  |-  8  e.  NN
3 zmodfz 10302 . . . 4  |-  ( ( A  e.  ZZ  /\  8  e.  NN )  ->  ( A  mod  8
)  e.  ( 0 ... ( 8  -  1 ) ) )
41, 2, 3sylancl 411 . . 3  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( 0 ... ( 8  -  1 ) ) )
5 8m1e7 9003 . . . 4  |-  ( 8  -  1 )  =  7
65oveq2i 5864 . . 3  |-  ( 0 ... ( 8  -  1 ) )  =  ( 0 ... 7
)
74, 6eleqtrdi 2263 . 2  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( 0 ... 7 ) )
8 neg1z 9244 . . . . . . . 8  |-  -u 1  e.  ZZ
9 z0even 11870 . . . . . . . . 9  |-  2  ||  0
10 1pneg1e0 8989 . . . . . . . . . 10  |-  ( 1  +  -u 1 )  =  0
11 ax-1cn 7867 . . . . . . . . . . 11  |-  1  e.  CC
12 neg1cn 8983 . . . . . . . . . . 11  |-  -u 1  e.  CC
1311, 12addcomi 8063 . . . . . . . . . 10  |-  ( 1  +  -u 1 )  =  ( -u 1  +  1 )
1410, 13eqtr3i 2193 . . . . . . . . 9  |-  0  =  ( -u 1  +  1 )
159, 14breqtri 4014 . . . . . . . 8  |-  2  ||  ( -u 1  +  1 )
16 noel 3418 . . . . . . . . . . 11  |-  -.  ( A  mod  8 )  e.  (/)
1716pm2.21i 641 . . . . . . . . . 10  |-  ( ( A  mod  8 )  e.  (/)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
18 neg1lt0 8986 . . . . . . . . . . 11  |-  -u 1  <  0
19 0z 9223 . . . . . . . . . . . 12  |-  0  e.  ZZ
20 fzn 9998 . . . . . . . . . . . 12  |-  ( ( 0  e.  ZZ  /\  -u 1  e.  ZZ )  ->  ( -u 1  <  0  <->  ( 0 ... -u 1 )  =  (/) ) )
2119, 8, 20mp2an 424 . . . . . . . . . . 11  |-  ( -u
1  <  0  <->  ( 0 ... -u 1 )  =  (/) )
2218, 21mpbi 144 . . . . . . . . . 10  |-  ( 0 ... -u 1 )  =  (/)
2317, 22eleq2s 2265 . . . . . . . . 9  |-  ( ( A  mod  8 )  e.  ( 0 ... -u 1 )  -> 
( A  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
2423a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... -u 1
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
258, 15, 243pm3.2i 1170 . . . . . . 7  |-  ( -u
1  e.  ZZ  /\  2  ||  ( -u 1  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  (
( A  mod  8
)  e.  ( 0 ... -u 1 )  -> 
( A  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
26 1e0p1 9384 . . . . . . 7  |-  1  =  ( 0  +  1 )
27 ssun1 3290 . . . . . . . 8  |-  { 1 ,  7 }  C_  ( { 1 ,  7 }  u.  { 3 ,  5 } )
28 1ex 7915 . . . . . . . . 9  |-  1  e.  _V
2928prid1 3689 . . . . . . . 8  |-  1  e.  { 1 ,  7 }
3027, 29sselii 3144 . . . . . . 7  |-  1  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
3125, 14, 26, 30lgsdir2lem2 13724 . . . . . 6  |-  ( 1  e.  ZZ  /\  2  ||  ( 1  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 1
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
32 df-2 8937 . . . . . 6  |-  2  =  ( 1  +  1 )
33 df-3 8938 . . . . . 6  |-  3  =  ( 2  +  1 )
34 ssun2 3291 . . . . . . 7  |-  { 3 ,  5 }  C_  ( { 1 ,  7 }  u.  { 3 ,  5 } )
35 3ex 8954 . . . . . . . 8  |-  3  e.  _V
3635prid1 3689 . . . . . . 7  |-  3  e.  { 3 ,  5 }
3734, 36sselii 3144 . . . . . 6  |-  3  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
3831, 32, 33, 37lgsdir2lem2 13724 . . . . 5  |-  ( 3  e.  ZZ  /\  2  ||  ( 3  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 3
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
39 df-4 8939 . . . . 5  |-  4  =  ( 3  +  1 )
40 df-5 8940 . . . . 5  |-  5  =  ( 4  +  1 )
41 5nn 9042 . . . . . . . 8  |-  5  e.  NN
4241elexi 2742 . . . . . . 7  |-  5  e.  _V
4342prid2 3690 . . . . . 6  |-  5  e.  { 3 ,  5 }
4434, 43sselii 3144 . . . . 5  |-  5  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
4538, 39, 40, 44lgsdir2lem2 13724 . . . 4  |-  ( 5  e.  ZZ  /\  2  ||  ( 5  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 5
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
46 df-6 8941 . . . 4  |-  6  =  ( 5  +  1 )
47 df-7 8942 . . . 4  |-  7  =  ( 6  +  1 )
48 7nn 9044 . . . . . . 7  |-  7  e.  NN
4948elexi 2742 . . . . . 6  |-  7  e.  _V
5049prid2 3690 . . . . 5  |-  7  e.  { 1 ,  7 }
5127, 50sselii 3144 . . . 4  |-  7  e.  ( { 1 ,  7 }  u.  {
3 ,  5 } )
5245, 46, 47, 51lgsdir2lem2 13724 . . 3  |-  ( 7  e.  ZZ  /\  2  ||  ( 7  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 7
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) ) )
5352simp3i 1003 . 2  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... 7
)  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
547, 53mpd 13 1  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141    u. cun 3119   (/)c0 3414   {cpr 3584   class class class wbr 3989  (class class class)co 5853   0cc0 7774   1c1 7775    + caddc 7777    < clt 7954    - cmin 8090   -ucneg 8091   NNcn 8878   2c2 8929   3c3 8930   4c4 8931   5c5 8932   6c6 8933   7c7 8934   8c8 8935   ZZcz 9212   ...cfz 9965    mod cmo 10278    || cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fl 10226  df-mod 10279  df-dvds 11750
This theorem is referenced by:  lgsdir2  13728
  Copyright terms: Public domain W3C validator