ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tangtx Unicode version

Theorem tangtx 12967
Description: The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.)
Assertion
Ref Expression
tangtx  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( tan `  A
) )

Proof of Theorem tangtx
StepHypRef Expression
1 elioore 9725 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  e.  RR )
21recoscld 11467 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  e.  RR )
31, 2remulcld 7820 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  e.  RR )
4 1re 7789 . . . . . . 7  |-  1  e.  RR
5 rehalfcl 8971 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  RR )
61, 5syl 14 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  e.  RR )
76resqcld 10481 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 2 )  e.  RR )
8 3nn 8906 . . . . . . . 8  |-  3  e.  NN
9 nndivre 8780 . . . . . . . 8  |-  ( ( ( ( A  / 
2 ) ^ 2 )  e.  RR  /\  3  e.  NN )  ->  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )
107, 8, 9sylancl 410 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 2 )  /  3 )  e.  RR )
11 resubcl 8050 . . . . . . 7  |-  ( ( 1  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
124, 10, 11sylancr 411 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
131, 12remulcld 7820 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  RR )
14 2re 8814 . . . . . . 7  |-  2  e.  RR
15 remulcl 7772 . . . . . . 7  |-  ( ( 2  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
1614, 10, 15sylancr 411 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
17 resubcl 8050 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  e.  RR )  ->  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  e.  RR )
184, 16, 17sylancr 411 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  RR )
1913, 18remulcld 7820 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  e.  RR )
201resincld 11466 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  A )  e.  RR )
2112resqcld 10481 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 )  e.  RR )
22 remulcl 7772 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 )  e.  RR )  ->  ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  e.  RR )
2314, 21, 22sylancr 411 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) )  e.  RR )
24 resubcl 8050 . . . . . . . 8  |-  ( ( ( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  e.  RR  /\  1  e.  RR )  ->  ( ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  -  1 )  e.  RR )
2523, 4, 24sylancl 410 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  -  1 )  e.  RR )
2612, 18remulcld 7820 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  e.  RR )
271recnd 7818 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  e.  CC )
28 2cn 8815 . . . . . . . . . . . 12  |-  2  e.  CC
2928a1i 9 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  2  e.  CC )
30 2ap0 8837 . . . . . . . . . . . 12  |-  2 #  0
3130a1i 9 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  2 #  0 )
3227, 29, 31divcanap2d 8576 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( A  /  2 ) )  =  A )
3332fveq2d 5433 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( 2  x.  ( A  /  2
) ) )  =  ( cos `  A
) )
346recnd 7818 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  e.  CC )
35 cos2t 11493 . . . . . . . . . 10  |-  ( ( A  /  2 )  e.  CC  ->  ( cos `  ( 2  x.  ( A  /  2
) ) )  =  ( ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 ) )
3634, 35syl 14 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( 2  x.  ( A  /  2
) ) )  =  ( ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 ) )
3733, 36eqtr3d 2175 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  =  ( ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 ) )
386recoscld 11467 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( A  / 
2 ) )  e.  RR )
3938resqcld 10481 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  ( A  /  2 ) ) ^ 2 )  e.  RR )
40 remulcl 7772 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( ( cos `  ( A  /  2 ) ) ^ 2 )  e.  RR )  ->  (
2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  e.  RR )
4114, 39, 40sylancr 411 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  e.  RR )
424a1i 9 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  1  e.  RR )
4314a1i 9 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  2  e.  RR )
44 eliooord 9741 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  A  /\  A  <  ( pi  / 
2 ) ) )
4544simpld 111 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  A )
46 2pos 8835 . . . . . . . . . . . . . . . 16  |-  0  <  2
4746a1i 9 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  2 )
481, 43, 45, 47divgt0d 8717 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( A  /  2
) )
49 pire 12915 . . . . . . . . . . . . . . . . . . 19  |-  pi  e.  RR
50 rehalfcl 8971 . . . . . . . . . . . . . . . . . . 19  |-  ( pi  e.  RR  ->  (
pi  /  2 )  e.  RR )
5149, 50mp1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
pi  /  2 )  e.  RR )
5244simprd 113 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( pi  /  2
) )
53 pigt2lt4 12913 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  <  pi  /\  pi  <  4 )
5453simpri 112 . . . . . . . . . . . . . . . . . . . . 21  |-  pi  <  4
55 2t2e4 8898 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2  x.  2 )  =  4
5654, 55breqtrri 3963 . . . . . . . . . . . . . . . . . . . 20  |-  pi  <  ( 2  x.  2 )
5714, 46pm3.2i 270 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2  e.  RR  /\  0  <  2 )
58 ltdivmul 8658 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( pi  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( pi 
/  2 )  <  2  <->  pi  <  ( 2  x.  2 ) ) )
5949, 14, 57, 58mp3an 1316 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( pi  /  2 )  <  2  <->  pi  <  ( 2  x.  2 ) )
6056, 59mpbir 145 . . . . . . . . . . . . . . . . . . 19  |-  ( pi 
/  2 )  <  2
6160a1i 9 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
pi  /  2 )  <  2 )
621, 51, 43, 52, 61lttrd 7912 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  2 )
6328mulid2i 7793 . . . . . . . . . . . . . . . . 17  |-  ( 1  x.  2 )  =  2
6462, 63breqtrrdi 3978 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( 1  x.  2 ) )
65 ltdivmul2 8660 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( A  /  2 )  <  1  <->  A  <  ( 1  x.  2 ) ) )
661, 42, 43, 47, 65syl112anc 1221 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  <  1  <->  A  <  ( 1  x.  2 ) ) )
6764, 66mpbird 166 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  <  1 )
686, 42, 67ltled 7905 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  <_ 
1 )
69 0xr 7836 . . . . . . . . . . . . . . 15  |-  0  e.  RR*
70 elioc2 9749 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
( A  /  2
)  e.  ( 0 (,] 1 )  <->  ( ( A  /  2 )  e.  RR  /\  0  < 
( A  /  2
)  /\  ( A  /  2 )  <_ 
1 ) ) )
7169, 4, 70mp2an 423 . . . . . . . . . . . . . 14  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  <->  ( ( A  /  2 )  e.  RR  /\  0  < 
( A  /  2
)  /\  ( A  /  2 )  <_ 
1 ) )
726, 48, 68, 71syl3anbrc 1166 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  e.  ( 0 (,] 1
) )
73 cos01bnd 11501 . . . . . . . . . . . . 13  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( cos `  ( A  /  2
) )  /\  ( cos `  ( A  / 
2 ) )  < 
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
7472, 73syl 14 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( cos `  ( A  /  2
) )  /\  ( cos `  ( A  / 
2 ) )  < 
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
7574simprd 113 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( A  / 
2 ) )  < 
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )
76 cos01gt0 11505 . . . . . . . . . . . . . 14  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  0  <  ( cos `  ( A  /  2 ) ) )
7772, 76syl 14 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( cos `  ( A  /  2 ) ) )
78 0re 7790 . . . . . . . . . . . . . 14  |-  0  e.  RR
79 ltle 7875 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( cos `  ( A  /  2 ) )  e.  RR )  -> 
( 0  <  ( cos `  ( A  / 
2 ) )  -> 
0  <_  ( cos `  ( A  /  2
) ) ) )
8078, 38, 79sylancr 411 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( cos `  ( A  /  2
) )  ->  0  <_  ( cos `  ( A  /  2 ) ) ) )
8177, 80mpd 13 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <_  ( cos `  ( A  /  2 ) ) )
8278a1i 9 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  e.  RR )
8382, 38, 12, 77, 75lttrd 7912 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )
8482, 12, 83ltled 7905 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <_  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )
8538, 12, 81, 84lt2sqd 10486 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  ( A  /  2 ) )  <  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  <->  ( ( cos `  ( A  / 
2 ) ) ^
2 )  <  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) ) )
8675, 85mpbid 146 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  ( A  /  2 ) ) ^ 2 )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )
87 ltmul2 8638 . . . . . . . . . . 11  |-  ( ( ( ( cos `  ( A  /  2 ) ) ^ 2 )  e.  RR  /\  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( ( cos `  ( A  /  2
) ) ^ 2 )  <  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 )  <->  ( 2  x.  ( ( cos `  ( A  /  2
) ) ^ 2 ) )  <  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) ) ) )
8839, 21, 43, 47, 87syl112anc 1221 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( cos `  ( A  /  2 ) ) ^ 2 )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 )  <->  ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  <  ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) ) ) )
8986, 88mpbid 146 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  <  ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) ) )
9041, 23, 42, 89ltsub1dd 8343 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 )  < 
( ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  -  1 ) )
9137, 90eqbrtrd 3958 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  < 
( ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  -  1 ) )
92 3re 8818 . . . . . . . . . 10  |-  3  e.  RR
93 remulcl 7772 . . . . . . . . . 10  |-  ( ( 3  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 3  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
9492, 10, 93sylancr 411 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
95 4re 8821 . . . . . . . . . 10  |-  4  e.  RR
96 remulcl 7772 . . . . . . . . . 10  |-  ( ( 4  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 4  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
9795, 10, 96sylancr 411 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
9810resqcld 10481 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 )  e.  RR )
99 remulcl 7772 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 )  e.  RR )  ->  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) )  e.  RR )
10014, 98, 99sylancr 411 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  e.  RR )
101 readdcl 7770 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) )  e.  RR )  ->  ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  e.  RR )
1024, 100, 101sylancr 411 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  e.  RR )
103 3lt4 8916 . . . . . . . . . 10  |-  3  <  4
10492a1i 9 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  3  e.  RR )
10595a1i 9 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  4  e.  RR )
1066, 48gt0ap0d 8415 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 ) #  0 )
1076, 106sqgt0apd 10483 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( ( A  / 
2 ) ^ 2 ) )
108 3pos 8838 . . . . . . . . . . . . 13  |-  0  <  3
109108a1i 9 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  3 )
1107, 104, 107, 109divgt0d 8717 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( ( ( A  /  2 ) ^
2 )  /  3
) )
111 ltmul1 8378 . . . . . . . . . . 11  |-  ( ( 3  e.  RR  /\  4  e.  RR  /\  (
( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR  /\  0  <  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  ->  ( 3  <  4  <->  ( 3  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  <  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) )
112104, 105, 10, 110, 111syl112anc 1221 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  <  4  <->  ( 3  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  < 
( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
113103, 112mpbii 147 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  <  ( 4  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
11494, 97, 102, 113ltsub2dd 8344 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 4  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  <  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 3  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
11542recnd 7818 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  1  e.  CC )
116 ax-1cn 7737 . . . . . . . . . . 11  |-  1  e.  CC
117100recnd 7818 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  e.  CC )
118 addcl 7769 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) )  e.  CC )  ->  ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  e.  CC )
119116, 117, 118sylancr 411 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  e.  CC )
12097recnd 7818 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  CC )
121119, 120subcld 8097 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 4  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  CC )
122 sq1 10417 . . . . . . . . . . . . . . 15  |-  ( 1 ^ 2 )  =  1
123122a1i 9 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1 ^ 2 )  =  1 )
12410recnd 7818 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 2 )  /  3 )  e.  CC )
125124mulid2d 7808 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )
126125oveq2d 5798 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 1  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
127123, 126oveq12d 5800 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1 ^ 2 )  -  ( 2  x.  ( 1  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
128127oveq1d 5797 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( 1 ^ 2 )  -  (
2  x.  ( 1  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  =  ( ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
129 binom2sub 10436 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  CC )  ->  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ^
2 )  =  ( ( ( 1 ^ 2 )  -  (
2  x.  ( 1  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )
130116, 124, 129sylancr 411 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 )  =  ( ( ( 1 ^ 2 )  -  ( 2  x.  ( 1  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
13198recnd 7818 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 )  e.  CC )
13216recnd 7818 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  CC )
133115, 131, 132addsubd 8118 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( ( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) )  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
134128, 130, 1333eqtr4d 2183 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 )  =  ( ( 1  +  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) )  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
135134oveq2d 5798 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) )  =  ( 2  x.  ( ( 1  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) )  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
136 addcl 7769 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 )  e.  CC )  ->  ( 1  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) )  e.  CC )
137116, 131, 136sylancr 411 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  e.  CC )
13829, 137, 132subdid 8200 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 2  x.  ( 1  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 2  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
13929, 115, 131adddid 7814 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 1  +  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( ( 2  x.  1 )  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )
1401162timesi 8874 . . . . . . . . . . . . . . 15  |-  ( 2  x.  1 )  =  ( 1  +  1 )
141140oveq1i 5792 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  1 )  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  =  ( ( 1  +  1 )  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )
142115, 115, 117addassd 7812 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  1 )  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( 1  +  ( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
143141, 142syl5eq 2185 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  1 )  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( 1  +  ( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
144139, 143eqtrd 2173 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 1  +  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( 1  +  ( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
14555oveq1i 5792 . . . . . . . . . . . . 13  |-  ( ( 2  x.  2 )  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  =  ( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )
14629, 29, 124mulassd 7813 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  2 )  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( 2  x.  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
147145, 146syl5reqr 2188 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 4  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
148144, 147oveq12d 5800 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 2  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 1  +  ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )  -  ( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
149115, 119, 120, 148assraddsubd 8154 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 2  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( 1  +  ( ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  -  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
150135, 138, 1493eqtrd 2177 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) )  =  ( 1  +  ( ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  -  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
151115, 121, 150mvrladdd 8153 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  -  1 )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
152 subcl 7985 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  CC )  ->  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  CC )
153116, 124, 152sylancr 411 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  CC )
154153, 115, 132subdid 8200 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  1 )  -  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
155153mulid1d 7807 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  1 )  =  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
156115, 124, 132subdird 8201 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 1  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  -  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
157132mulid2d 7808 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
158124, 29, 124mul12d 7938 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
)  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
159124sqvald 10452 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
160159oveq2d 5798 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  =  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
161158, 160eqtr4d 2176 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
)  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
162157, 161oveq12d 5800 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  -  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 )  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  -  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )
163156, 162eqtrd 2173 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  -  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )
164155, 163oveq12d 5800 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  1 )  -  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  -  ( ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  -  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
165115, 124, 132, 117subadd4d 8145 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  -  ( ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  -  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  +  ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
166 df-3 8804 . . . . . . . . . . . . . 14  |-  3  =  ( 2  +  1 )
16728, 116addcomi 7930 . . . . . . . . . . . . . 14  |-  ( 2  +  1 )  =  ( 1  +  2 )
168166, 167eqtri 2161 . . . . . . . . . . . . 13  |-  3  =  ( 1  +  2 )
169168oveq1i 5792 . . . . . . . . . . . 12  |-  ( 3  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  =  ( ( 1  +  2 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )
170125oveq1d 5797 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  +  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  +  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
171115, 124, 29, 170joinlmuladdmuld 7817 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  2 )  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  +  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
172169, 171syl5eq 2185 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  +  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
173172oveq2d 5798 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 3  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  +  ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
174165, 173eqtr4d 2176 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  -  ( ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  -  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 3  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
175154, 164, 1743eqtrd 2177 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 3  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
176114, 151, 1753brtr4d 3968 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  -  1 )  <  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  x.  ( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
1772, 25, 26, 91, 176lttrd 7912 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) )
178 ltmul2 8638 . . . . . . 7  |-  ( ( ( cos `  A
)  e.  RR  /\  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  ->  ( ( cos `  A )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  <->  ( A  x.  ( cos `  A ) )  <  ( A  x.  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  x.  ( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) ) ) )
1792, 26, 1, 45, 178syl112anc 1221 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  A
)  <  ( (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )  <->  ( A  x.  ( cos `  A
) )  <  ( A  x.  ( (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) ) ) ) )
180177, 179mpbid 146 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  < 
( A  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) ) ) )
18118recnd 7818 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  CC )
18227, 153, 181mulassd 7813 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( A  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) ) )
183180, 182breqtrrd 3964 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  < 
( ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) )
18413, 38remulcld 7820 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  /  2
) ) )  e.  RR )
18574simpld 111 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  <  ( cos `  ( A  /  2 ) ) )
1861, 12, 45, 83mulgt0d 7909 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) )
187 ltmul2 8638 . . . . . . 7  |-  ( ( ( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  e.  RR  /\  ( cos `  ( A  /  2 ) )  e.  RR  /\  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  e.  RR  /\  0  <  ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) ) )  ->  ( ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  < 
( cos `  ( A  /  2 ) )  <-> 
( ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  <  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
18818, 38, 13, 186, 187syl112anc 1221 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( cos `  ( A  /  2
) )  <->  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  x.  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )  < 
( ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  / 
2 ) ) ) ) )
189185, 188mpbid 146 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  <  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  x.  ( cos `  ( A  /  2 ) ) ) )
19029, 34, 153mulassd 7813 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  ( A  /  2 ) )  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  =  ( 2  x.  (
( A  /  2
)  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) )
19132oveq1d 5797 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  ( A  /  2 ) )  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  =  ( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) )
19234, 115, 124subdid 8200 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( ( A  /  2 )  x.  1 )  -  ( ( A  / 
2 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
19334mulid1d 7807 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  1 )  =  ( A  / 
2 ) )
194166oveq2i 5793 . . . . . . . . . . . . . . . 16  |-  ( ( A  /  2 ) ^ 3 )  =  ( ( A  / 
2 ) ^ (
2  +  1 ) )
195 2nn0 9018 . . . . . . . . . . . . . . . . 17  |-  2  e.  NN0
196 expp1 10331 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  /  2
)  e.  CC  /\  2  e.  NN0 )  -> 
( ( A  / 
2 ) ^ (
2  +  1 ) )  =  ( ( ( A  /  2
) ^ 2 )  x.  ( A  / 
2 ) ) )
19734, 195, 196sylancl 410 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ ( 2  +  1 ) )  =  ( ( ( A  /  2 ) ^ 2 )  x.  ( A  /  2
) ) )
198194, 197syl5eq 2185 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 3 )  =  ( ( ( A  /  2 ) ^ 2 )  x.  ( A  /  2
) ) )
1997recnd 7818 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 2 )  e.  CC )
200199, 34mulcomd 7811 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 2 )  x.  ( A  /  2 ) )  =  ( ( A  /  2 )  x.  ( ( A  / 
2 ) ^ 2 ) ) )
201198, 200eqtrd 2173 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 3 )  =  ( ( A  /  2 )  x.  ( ( A  / 
2 ) ^ 2 ) ) )
202201oveq1d 5797 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 3 )  /  3 )  =  ( ( ( A  /  2 )  x.  ( ( A  /  2 ) ^
2 ) )  / 
3 ) )
203 3cn 8819 . . . . . . . . . . . . . . 15  |-  3  e.  CC
204203a1i 9 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  3  e.  CC )
205104, 109gt0ap0d 8415 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  3 #  0 )
20634, 199, 204, 205divassapd 8610 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  x.  (
( A  /  2
) ^ 2 ) )  /  3 )  =  ( ( A  /  2 )  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
207202, 206eqtr2d 2174 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( A  /  2 ) ^ 3 )  / 
3 ) )
208193, 207oveq12d 5800 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  x.  1 )  -  ( ( A  /  2 )  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^
3 )  /  3
) ) )
209192, 208eqtrd 2173 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^
3 )  /  3
) ) )
210209oveq2d 5798 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( A  /  2 )  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( 2  x.  ( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) ) ) )
211190, 191, 2103eqtr3d 2181 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) ) ) )
212 sin01bnd 11500 . . . . . . . . . . 11  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  (
( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2
) )  /\  ( sin `  ( A  / 
2 ) )  < 
( A  /  2
) ) )
21372, 212syl 14 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2
) )  /\  ( sin `  ( A  / 
2 ) )  < 
( A  /  2
) ) )
214213simpld 111 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  -  ( ( ( A  /  2
) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2 ) ) )
215 3nn0 9019 . . . . . . . . . . . . 13  |-  3  e.  NN0
216 reexpcl 10341 . . . . . . . . . . . . 13  |-  ( ( ( A  /  2
)  e.  RR  /\  3  e.  NN0 )  -> 
( ( A  / 
2 ) ^ 3 )  e.  RR )
2176, 215, 216sylancl 410 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 3 )  e.  RR )
218 nndivre 8780 . . . . . . . . . . . 12  |-  ( ( ( ( A  / 
2 ) ^ 3 )  e.  RR  /\  3  e.  NN )  ->  ( ( ( A  /  2 ) ^
3 )  /  3
)  e.  RR )
219217, 8, 218sylancl 410 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 3 )  /  3 )  e.  RR )
2206, 219resubcld 8167 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  -  ( ( ( A  /  2
) ^ 3 )  /  3 ) )  e.  RR )
2216resincld 11466 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( A  / 
2 ) )  e.  RR )
222 ltmul2 8638 . . . . . . . . . 10  |-  ( ( ( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  e.  RR  /\  ( sin `  ( A  /  2 ) )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^ 3 )  / 
3 ) )  < 
( sin `  ( A  /  2 ) )  <-> 
( 2  x.  (
( A  /  2
)  -  ( ( ( A  /  2
) ^ 3 )  /  3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) ) ) )
223220, 221, 43, 47, 222syl112anc 1221 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2
) )  <->  ( 2  x.  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^
3 )  /  3
) ) )  < 
( 2  x.  ( sin `  ( A  / 
2 ) ) ) ) )
224214, 223mpbid 146 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^ 3 )  / 
3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) ) )
225211, 224eqbrtrd 3958 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) ) )
226 remulcl 7772 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( sin `  ( A  /  2 ) )  e.  RR )  -> 
( 2  x.  ( sin `  ( A  / 
2 ) ) )  e.  RR )
22714, 221, 226sylancr 411 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( sin `  ( A  /  2
) ) )  e.  RR )
228 ltmul1 8378 . . . . . . . 8  |-  ( ( ( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  e.  RR  /\  ( 2  x.  ( sin `  ( A  / 
2 ) ) )  e.  RR  /\  (
( cos `  ( A  /  2 ) )  e.  RR  /\  0  <  ( cos `  ( A  /  2 ) ) ) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) )  <->  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  x.  ( cos `  ( A  /  2 ) ) )  <  ( ( 2  x.  ( sin `  ( A  /  2
) ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
22913, 227, 38, 77, 228syl112anc 1221 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) )  <->  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  x.  ( cos `  ( A  /  2 ) ) )  <  ( ( 2  x.  ( sin `  ( A  /  2
) ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
230225, 229mpbid 146 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  /  2
) ) )  < 
( ( 2  x.  ( sin `  ( A  /  2 ) ) )  x.  ( cos `  ( A  /  2
) ) ) )
231221recnd 7818 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( A  / 
2 ) )  e.  CC )
23238recnd 7818 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( A  / 
2 ) )  e.  CC )
23329, 231, 232mulassd 7813 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  ( sin `  ( A  / 
2 ) ) )  x.  ( cos `  ( A  /  2 ) ) )  =  ( 2  x.  ( ( sin `  ( A  /  2
) )  x.  ( cos `  ( A  / 
2 ) ) ) ) )
234 sin2t 11492 . . . . . . . 8  |-  ( ( A  /  2 )  e.  CC  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
23534, 234syl 14 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
23632fveq2d 5433 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( sin `  A
) )
237233, 235, 2363eqtr2rd 2180 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  A )  =  ( ( 2  x.  ( sin `  ( A  /  2 ) ) )  x.  ( cos `  ( A  /  2
) ) ) )
238230, 237breqtrrd 3964 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  /  2
) ) )  < 
( sin `  A
) )
23919, 184, 20, 189, 238lttrd 7912 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  <  ( sin `  A
) )
2403, 19, 20, 183, 239lttrd 7912 . . 3  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  < 
( sin `  A
) )
241 sincosq1sgn 12955 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( sin `  A )  /\  0  <  ( cos `  A
) ) )
242241simprd 113 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( cos `  A
) )
243 ltmuldiv 8656 . . . 4  |-  ( ( A  e.  RR  /\  ( sin `  A )  e.  RR  /\  (
( cos `  A
)  e.  RR  /\  0  <  ( cos `  A
) ) )  -> 
( ( A  x.  ( cos `  A ) )  <  ( sin `  A )  <->  A  <  ( ( sin `  A
)  /  ( cos `  A ) ) ) )
2441, 20, 2, 242, 243syl112anc 1221 . . 3  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  ( cos `  A ) )  <  ( sin `  A
)  <->  A  <  ( ( sin `  A )  /  ( cos `  A
) ) ) )
245240, 244mpbid 146 . 2  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( ( sin `  A
)  /  ( cos `  A ) ) )
2462, 242gt0ap0d 8415 . . 3  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A ) #  0 )
247 tanvalap 11451 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
24827, 246, 247syl2anc 409 . 2  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
249245, 248breqtrrd 3964 1  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( tan `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649   RR*cxr 7823    < clt 7824    <_ cle 7825    - cmin 7957   # cap 8367    / cdiv 8456   NNcn 8744   2c2 8795   3c3 8796   4c4 8797   NN0cn0 9001   (,)cioo 9701   (,]cioc 9702   ^cexp 10323   sincsin 11387   cosccos 11388   tanctan 11389   picpi 11390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764  ax-pre-suploc 7765  ax-addf 7766  ax-mulf 7767
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-of 5990  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-map 6552  df-pm 6553  df-en 6643  df-dom 6644  df-fin 6645  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-9 8810  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-xadd 9590  df-ioo 9705  df-ioc 9706  df-ico 9707  df-icc 9708  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-bc 10526  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-sin 11393  df-cos 11394  df-tan 11395  df-pi 11396  df-rest 12161  df-topgen 12180  df-psmet 12195  df-xmet 12196  df-met 12197  df-bl 12198  df-mopn 12199  df-top 12204  df-topon 12217  df-bases 12249  df-ntr 12304  df-cn 12396  df-cnp 12397  df-tx 12461  df-cncf 12766  df-limced 12833  df-dvap 12834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator