ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tangtx Unicode version

Theorem tangtx 13553
Description: The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.)
Assertion
Ref Expression
tangtx  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( tan `  A
) )

Proof of Theorem tangtx
StepHypRef Expression
1 elioore 9869 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  e.  RR )
21recoscld 11687 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  e.  RR )
31, 2remulcld 7950 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  e.  RR )
4 1re 7919 . . . . . . 7  |-  1  e.  RR
5 rehalfcl 9105 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  RR )
61, 5syl 14 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  e.  RR )
76resqcld 10635 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 2 )  e.  RR )
8 3nn 9040 . . . . . . . 8  |-  3  e.  NN
9 nndivre 8914 . . . . . . . 8  |-  ( ( ( ( A  / 
2 ) ^ 2 )  e.  RR  /\  3  e.  NN )  ->  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )
107, 8, 9sylancl 411 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 2 )  /  3 )  e.  RR )
11 resubcl 8183 . . . . . . 7  |-  ( ( 1  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
124, 10, 11sylancr 412 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
131, 12remulcld 7950 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  RR )
14 2re 8948 . . . . . . 7  |-  2  e.  RR
15 remulcl 7902 . . . . . . 7  |-  ( ( 2  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
1614, 10, 15sylancr 412 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
17 resubcl 8183 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  e.  RR )  ->  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  e.  RR )
184, 16, 17sylancr 412 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  RR )
1913, 18remulcld 7950 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  e.  RR )
201resincld 11686 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  A )  e.  RR )
2112resqcld 10635 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 )  e.  RR )
22 remulcl 7902 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 )  e.  RR )  ->  ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  e.  RR )
2314, 21, 22sylancr 412 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) )  e.  RR )
24 resubcl 8183 . . . . . . . 8  |-  ( ( ( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  e.  RR  /\  1  e.  RR )  ->  ( ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  -  1 )  e.  RR )
2523, 4, 24sylancl 411 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  -  1 )  e.  RR )
2612, 18remulcld 7950 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  e.  RR )
271recnd 7948 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  e.  CC )
28 2cn 8949 . . . . . . . . . . . 12  |-  2  e.  CC
2928a1i 9 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  2  e.  CC )
30 2ap0 8971 . . . . . . . . . . . 12  |-  2 #  0
3130a1i 9 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  2 #  0 )
3227, 29, 31divcanap2d 8709 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( A  /  2 ) )  =  A )
3332fveq2d 5500 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( 2  x.  ( A  /  2
) ) )  =  ( cos `  A
) )
346recnd 7948 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  e.  CC )
35 cos2t 11713 . . . . . . . . . 10  |-  ( ( A  /  2 )  e.  CC  ->  ( cos `  ( 2  x.  ( A  /  2
) ) )  =  ( ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 ) )
3634, 35syl 14 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( 2  x.  ( A  /  2
) ) )  =  ( ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 ) )
3733, 36eqtr3d 2205 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  =  ( ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 ) )
386recoscld 11687 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( A  / 
2 ) )  e.  RR )
3938resqcld 10635 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  ( A  /  2 ) ) ^ 2 )  e.  RR )
40 remulcl 7902 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( ( cos `  ( A  /  2 ) ) ^ 2 )  e.  RR )  ->  (
2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  e.  RR )
4114, 39, 40sylancr 412 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  e.  RR )
424a1i 9 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  1  e.  RR )
4314a1i 9 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  2  e.  RR )
44 eliooord 9885 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  A  /\  A  <  ( pi  / 
2 ) ) )
4544simpld 111 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  A )
46 2pos 8969 . . . . . . . . . . . . . . . 16  |-  0  <  2
4746a1i 9 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  2 )
481, 43, 45, 47divgt0d 8851 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( A  /  2
) )
49 pire 13501 . . . . . . . . . . . . . . . . . . 19  |-  pi  e.  RR
50 rehalfcl 9105 . . . . . . . . . . . . . . . . . . 19  |-  ( pi  e.  RR  ->  (
pi  /  2 )  e.  RR )
5149, 50mp1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
pi  /  2 )  e.  RR )
5244simprd 113 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( pi  /  2
) )
53 pigt2lt4 13499 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  <  pi  /\  pi  <  4 )
5453simpri 112 . . . . . . . . . . . . . . . . . . . . 21  |-  pi  <  4
55 2t2e4 9032 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2  x.  2 )  =  4
5654, 55breqtrri 4016 . . . . . . . . . . . . . . . . . . . 20  |-  pi  <  ( 2  x.  2 )
5714, 46pm3.2i 270 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2  e.  RR  /\  0  <  2 )
58 ltdivmul 8792 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( pi  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( pi 
/  2 )  <  2  <->  pi  <  ( 2  x.  2 ) ) )
5949, 14, 57, 58mp3an 1332 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( pi  /  2 )  <  2  <->  pi  <  ( 2  x.  2 ) )
6056, 59mpbir 145 . . . . . . . . . . . . . . . . . . 19  |-  ( pi 
/  2 )  <  2
6160a1i 9 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
pi  /  2 )  <  2 )
621, 51, 43, 52, 61lttrd 8045 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  2 )
6328mulid2i 7923 . . . . . . . . . . . . . . . . 17  |-  ( 1  x.  2 )  =  2
6462, 63breqtrrdi 4031 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( 1  x.  2 ) )
65 ltdivmul2 8794 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( A  /  2 )  <  1  <->  A  <  ( 1  x.  2 ) ) )
661, 42, 43, 47, 65syl112anc 1237 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  <  1  <->  A  <  ( 1  x.  2 ) ) )
6764, 66mpbird 166 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  <  1 )
686, 42, 67ltled 8038 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  <_ 
1 )
69 0xr 7966 . . . . . . . . . . . . . . 15  |-  0  e.  RR*
70 elioc2 9893 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
( A  /  2
)  e.  ( 0 (,] 1 )  <->  ( ( A  /  2 )  e.  RR  /\  0  < 
( A  /  2
)  /\  ( A  /  2 )  <_ 
1 ) ) )
7169, 4, 70mp2an 424 . . . . . . . . . . . . . 14  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  <->  ( ( A  /  2 )  e.  RR  /\  0  < 
( A  /  2
)  /\  ( A  /  2 )  <_ 
1 ) )
726, 48, 68, 71syl3anbrc 1176 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  e.  ( 0 (,] 1
) )
73 cos01bnd 11721 . . . . . . . . . . . . 13  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( cos `  ( A  /  2
) )  /\  ( cos `  ( A  / 
2 ) )  < 
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
7472, 73syl 14 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( cos `  ( A  /  2
) )  /\  ( cos `  ( A  / 
2 ) )  < 
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
7574simprd 113 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( A  / 
2 ) )  < 
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )
76 cos01gt0 11725 . . . . . . . . . . . . . 14  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  0  <  ( cos `  ( A  /  2 ) ) )
7772, 76syl 14 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( cos `  ( A  /  2 ) ) )
78 0re 7920 . . . . . . . . . . . . . 14  |-  0  e.  RR
79 ltle 8007 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( cos `  ( A  /  2 ) )  e.  RR )  -> 
( 0  <  ( cos `  ( A  / 
2 ) )  -> 
0  <_  ( cos `  ( A  /  2
) ) ) )
8078, 38, 79sylancr 412 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( cos `  ( A  /  2
) )  ->  0  <_  ( cos `  ( A  /  2 ) ) ) )
8177, 80mpd 13 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <_  ( cos `  ( A  /  2 ) ) )
8278a1i 9 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  e.  RR )
8382, 38, 12, 77, 75lttrd 8045 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )
8482, 12, 83ltled 8038 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <_  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )
8538, 12, 81, 84lt2sqd 10640 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  ( A  /  2 ) )  <  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  <->  ( ( cos `  ( A  / 
2 ) ) ^
2 )  <  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) ) )
8675, 85mpbid 146 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  ( A  /  2 ) ) ^ 2 )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )
87 ltmul2 8772 . . . . . . . . . . 11  |-  ( ( ( ( cos `  ( A  /  2 ) ) ^ 2 )  e.  RR  /\  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( ( cos `  ( A  /  2
) ) ^ 2 )  <  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 )  <->  ( 2  x.  ( ( cos `  ( A  /  2
) ) ^ 2 ) )  <  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) ) ) )
8839, 21, 43, 47, 87syl112anc 1237 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( cos `  ( A  /  2 ) ) ^ 2 )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 )  <->  ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  <  ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) ) ) )
8986, 88mpbid 146 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  <  ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) ) )
9041, 23, 42, 89ltsub1dd 8476 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 )  < 
( ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  -  1 ) )
9137, 90eqbrtrd 4011 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  < 
( ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  -  1 ) )
92 3re 8952 . . . . . . . . . 10  |-  3  e.  RR
93 remulcl 7902 . . . . . . . . . 10  |-  ( ( 3  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 3  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
9492, 10, 93sylancr 412 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
95 4re 8955 . . . . . . . . . 10  |-  4  e.  RR
96 remulcl 7902 . . . . . . . . . 10  |-  ( ( 4  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 4  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
9795, 10, 96sylancr 412 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
9810resqcld 10635 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 )  e.  RR )
99 remulcl 7902 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 )  e.  RR )  ->  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) )  e.  RR )
10014, 98, 99sylancr 412 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  e.  RR )
101 readdcl 7900 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) )  e.  RR )  ->  ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  e.  RR )
1024, 100, 101sylancr 412 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  e.  RR )
103 3lt4 9050 . . . . . . . . . 10  |-  3  <  4
10492a1i 9 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  3  e.  RR )
10595a1i 9 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  4  e.  RR )
1066, 48gt0ap0d 8548 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 ) #  0 )
1076, 106sqgt0apd 10637 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( ( A  / 
2 ) ^ 2 ) )
108 3pos 8972 . . . . . . . . . . . . 13  |-  0  <  3
109108a1i 9 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  3 )
1107, 104, 107, 109divgt0d 8851 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( ( ( A  /  2 ) ^
2 )  /  3
) )
111 ltmul1 8511 . . . . . . . . . . 11  |-  ( ( 3  e.  RR  /\  4  e.  RR  /\  (
( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR  /\  0  <  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  ->  ( 3  <  4  <->  ( 3  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  <  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) )
112104, 105, 10, 110, 111syl112anc 1237 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  <  4  <->  ( 3  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  < 
( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
113103, 112mpbii 147 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  <  ( 4  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
11494, 97, 102, 113ltsub2dd 8477 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 4  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  <  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 3  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
11542recnd 7948 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  1  e.  CC )
116 ax-1cn 7867 . . . . . . . . . . 11  |-  1  e.  CC
117100recnd 7948 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  e.  CC )
118 addcl 7899 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) )  e.  CC )  ->  ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  e.  CC )
119116, 117, 118sylancr 412 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  e.  CC )
12097recnd 7948 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  CC )
121119, 120subcld 8230 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 4  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  CC )
122 sq1 10569 . . . . . . . . . . . . . . 15  |-  ( 1 ^ 2 )  =  1
123122a1i 9 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1 ^ 2 )  =  1 )
12410recnd 7948 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 2 )  /  3 )  e.  CC )
125124mulid2d 7938 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )
126125oveq2d 5869 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 1  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
127123, 126oveq12d 5871 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1 ^ 2 )  -  ( 2  x.  ( 1  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
128127oveq1d 5868 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( 1 ^ 2 )  -  (
2  x.  ( 1  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  =  ( ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
129 binom2sub 10589 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  CC )  ->  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ^
2 )  =  ( ( ( 1 ^ 2 )  -  (
2  x.  ( 1  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )
130116, 124, 129sylancr 412 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 )  =  ( ( ( 1 ^ 2 )  -  ( 2  x.  ( 1  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
13198recnd 7948 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 )  e.  CC )
13216recnd 7948 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  CC )
133115, 131, 132addsubd 8251 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( ( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) )  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
134128, 130, 1333eqtr4d 2213 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 )  =  ( ( 1  +  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) )  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
135134oveq2d 5869 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) )  =  ( 2  x.  ( ( 1  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) )  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
136 addcl 7899 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 )  e.  CC )  ->  ( 1  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) )  e.  CC )
137116, 131, 136sylancr 412 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  e.  CC )
13829, 137, 132subdid 8333 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 2  x.  ( 1  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 2  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
13929, 115, 131adddid 7944 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 1  +  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( ( 2  x.  1 )  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )
1401162timesi 9008 . . . . . . . . . . . . . . 15  |-  ( 2  x.  1 )  =  ( 1  +  1 )
141140oveq1i 5863 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  1 )  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  =  ( ( 1  +  1 )  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )
142115, 115, 117addassd 7942 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  1 )  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( 1  +  ( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
143141, 142eqtrid 2215 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  1 )  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( 1  +  ( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
144139, 143eqtrd 2203 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 1  +  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( 1  +  ( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
14529, 29, 124mulassd 7943 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  2 )  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( 2  x.  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
14655oveq1i 5863 . . . . . . . . . . . . 13  |-  ( ( 2  x.  2 )  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  =  ( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )
147145, 146eqtr3di 2218 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 4  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
148144, 147oveq12d 5871 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 2  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 1  +  ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )  -  ( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
149115, 119, 120, 148assraddsubd 8287 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 2  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( 1  +  ( ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  -  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
150135, 138, 1493eqtrd 2207 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) )  =  ( 1  +  ( ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  -  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
151115, 121, 150mvrladdd 8286 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  -  1 )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
152 subcl 8118 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  CC )  ->  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  CC )
153116, 124, 152sylancr 412 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  CC )
154153, 115, 132subdid 8333 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  1 )  -  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
155153mulid1d 7937 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  1 )  =  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
156115, 124, 132subdird 8334 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 1  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  -  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
157132mulid2d 7938 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
158124, 29, 124mul12d 8071 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
)  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
159124sqvald 10606 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
160159oveq2d 5869 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  =  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
161158, 160eqtr4d 2206 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
)  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
162157, 161oveq12d 5871 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  -  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 )  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  -  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )
163156, 162eqtrd 2203 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  -  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )
164155, 163oveq12d 5871 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  1 )  -  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  -  ( ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  -  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
165115, 124, 132, 117subadd4d 8278 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  -  ( ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  -  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  +  ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
166 df-3 8938 . . . . . . . . . . . . . 14  |-  3  =  ( 2  +  1 )
16728, 116addcomi 8063 . . . . . . . . . . . . . 14  |-  ( 2  +  1 )  =  ( 1  +  2 )
168166, 167eqtri 2191 . . . . . . . . . . . . 13  |-  3  =  ( 1  +  2 )
169168oveq1i 5863 . . . . . . . . . . . 12  |-  ( 3  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  =  ( ( 1  +  2 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )
170125oveq1d 5868 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  +  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  +  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
171115, 124, 29, 170joinlmuladdmuld 7947 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  2 )  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  +  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
172169, 171eqtrid 2215 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  +  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
173172oveq2d 5869 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 3  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  +  ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
174165, 173eqtr4d 2206 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  -  ( ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  -  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 3  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
175154, 164, 1743eqtrd 2207 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 3  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
176114, 151, 1753brtr4d 4021 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  -  1 )  <  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  x.  ( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
1772, 25, 26, 91, 176lttrd 8045 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) )
178 ltmul2 8772 . . . . . . 7  |-  ( ( ( cos `  A
)  e.  RR  /\  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  ->  ( ( cos `  A )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  <->  ( A  x.  ( cos `  A ) )  <  ( A  x.  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  x.  ( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) ) ) )
1792, 26, 1, 45, 178syl112anc 1237 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  A
)  <  ( (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )  <->  ( A  x.  ( cos `  A
) )  <  ( A  x.  ( (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) ) ) ) )
180177, 179mpbid 146 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  < 
( A  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) ) ) )
18118recnd 7948 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  CC )
18227, 153, 181mulassd 7943 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( A  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) ) )
183180, 182breqtrrd 4017 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  < 
( ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) )
18413, 38remulcld 7950 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  /  2
) ) )  e.  RR )
18574simpld 111 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  <  ( cos `  ( A  /  2 ) ) )
1861, 12, 45, 83mulgt0d 8042 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) )
187 ltmul2 8772 . . . . . . 7  |-  ( ( ( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  e.  RR  /\  ( cos `  ( A  /  2 ) )  e.  RR  /\  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  e.  RR  /\  0  <  ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) ) )  ->  ( ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  < 
( cos `  ( A  /  2 ) )  <-> 
( ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  <  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
18818, 38, 13, 186, 187syl112anc 1237 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( cos `  ( A  /  2
) )  <->  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  x.  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )  < 
( ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  / 
2 ) ) ) ) )
189185, 188mpbid 146 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  <  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  x.  ( cos `  ( A  /  2 ) ) ) )
19029, 34, 153mulassd 7943 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  ( A  /  2 ) )  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  =  ( 2  x.  (
( A  /  2
)  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) )
19132oveq1d 5868 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  ( A  /  2 ) )  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  =  ( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) )
19234, 115, 124subdid 8333 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( ( A  /  2 )  x.  1 )  -  ( ( A  / 
2 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
19334mulid1d 7937 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  1 )  =  ( A  / 
2 ) )
194166oveq2i 5864 . . . . . . . . . . . . . . . 16  |-  ( ( A  /  2 ) ^ 3 )  =  ( ( A  / 
2 ) ^ (
2  +  1 ) )
195 2nn0 9152 . . . . . . . . . . . . . . . . 17  |-  2  e.  NN0
196 expp1 10483 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  /  2
)  e.  CC  /\  2  e.  NN0 )  -> 
( ( A  / 
2 ) ^ (
2  +  1 ) )  =  ( ( ( A  /  2
) ^ 2 )  x.  ( A  / 
2 ) ) )
19734, 195, 196sylancl 411 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ ( 2  +  1 ) )  =  ( ( ( A  /  2 ) ^ 2 )  x.  ( A  /  2
) ) )
198194, 197eqtrid 2215 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 3 )  =  ( ( ( A  /  2 ) ^ 2 )  x.  ( A  /  2
) ) )
1997recnd 7948 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 2 )  e.  CC )
200199, 34mulcomd 7941 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 2 )  x.  ( A  /  2 ) )  =  ( ( A  /  2 )  x.  ( ( A  / 
2 ) ^ 2 ) ) )
201198, 200eqtrd 2203 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 3 )  =  ( ( A  /  2 )  x.  ( ( A  / 
2 ) ^ 2 ) ) )
202201oveq1d 5868 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 3 )  /  3 )  =  ( ( ( A  /  2 )  x.  ( ( A  /  2 ) ^
2 ) )  / 
3 ) )
203 3cn 8953 . . . . . . . . . . . . . . 15  |-  3  e.  CC
204203a1i 9 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  3  e.  CC )
205104, 109gt0ap0d 8548 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  3 #  0 )
20634, 199, 204, 205divassapd 8743 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  x.  (
( A  /  2
) ^ 2 ) )  /  3 )  =  ( ( A  /  2 )  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
207202, 206eqtr2d 2204 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( A  /  2 ) ^ 3 )  / 
3 ) )
208193, 207oveq12d 5871 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  x.  1 )  -  ( ( A  /  2 )  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^
3 )  /  3
) ) )
209192, 208eqtrd 2203 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^
3 )  /  3
) ) )
210209oveq2d 5869 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( A  /  2 )  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( 2  x.  ( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) ) ) )
211190, 191, 2103eqtr3d 2211 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) ) ) )
212 sin01bnd 11720 . . . . . . . . . . 11  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  (
( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2
) )  /\  ( sin `  ( A  / 
2 ) )  < 
( A  /  2
) ) )
21372, 212syl 14 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2
) )  /\  ( sin `  ( A  / 
2 ) )  < 
( A  /  2
) ) )
214213simpld 111 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  -  ( ( ( A  /  2
) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2 ) ) )
215 3nn0 9153 . . . . . . . . . . . . 13  |-  3  e.  NN0
216 reexpcl 10493 . . . . . . . . . . . . 13  |-  ( ( ( A  /  2
)  e.  RR  /\  3  e.  NN0 )  -> 
( ( A  / 
2 ) ^ 3 )  e.  RR )
2176, 215, 216sylancl 411 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 3 )  e.  RR )
218 nndivre 8914 . . . . . . . . . . . 12  |-  ( ( ( ( A  / 
2 ) ^ 3 )  e.  RR  /\  3  e.  NN )  ->  ( ( ( A  /  2 ) ^
3 )  /  3
)  e.  RR )
219217, 8, 218sylancl 411 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 3 )  /  3 )  e.  RR )
2206, 219resubcld 8300 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  -  ( ( ( A  /  2
) ^ 3 )  /  3 ) )  e.  RR )
2216resincld 11686 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( A  / 
2 ) )  e.  RR )
222 ltmul2 8772 . . . . . . . . . 10  |-  ( ( ( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  e.  RR  /\  ( sin `  ( A  /  2 ) )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^ 3 )  / 
3 ) )  < 
( sin `  ( A  /  2 ) )  <-> 
( 2  x.  (
( A  /  2
)  -  ( ( ( A  /  2
) ^ 3 )  /  3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) ) ) )
223220, 221, 43, 47, 222syl112anc 1237 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2
) )  <->  ( 2  x.  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^
3 )  /  3
) ) )  < 
( 2  x.  ( sin `  ( A  / 
2 ) ) ) ) )
224214, 223mpbid 146 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^ 3 )  / 
3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) ) )
225211, 224eqbrtrd 4011 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) ) )
226 remulcl 7902 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( sin `  ( A  /  2 ) )  e.  RR )  -> 
( 2  x.  ( sin `  ( A  / 
2 ) ) )  e.  RR )
22714, 221, 226sylancr 412 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( sin `  ( A  /  2
) ) )  e.  RR )
228 ltmul1 8511 . . . . . . . 8  |-  ( ( ( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  e.  RR  /\  ( 2  x.  ( sin `  ( A  / 
2 ) ) )  e.  RR  /\  (
( cos `  ( A  /  2 ) )  e.  RR  /\  0  <  ( cos `  ( A  /  2 ) ) ) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) )  <->  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  x.  ( cos `  ( A  /  2 ) ) )  <  ( ( 2  x.  ( sin `  ( A  /  2
) ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
22913, 227, 38, 77, 228syl112anc 1237 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) )  <->  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  x.  ( cos `  ( A  /  2 ) ) )  <  ( ( 2  x.  ( sin `  ( A  /  2
) ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
230225, 229mpbid 146 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  /  2
) ) )  < 
( ( 2  x.  ( sin `  ( A  /  2 ) ) )  x.  ( cos `  ( A  /  2
) ) ) )
231221recnd 7948 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( A  / 
2 ) )  e.  CC )
23238recnd 7948 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( A  / 
2 ) )  e.  CC )
23329, 231, 232mulassd 7943 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  ( sin `  ( A  / 
2 ) ) )  x.  ( cos `  ( A  /  2 ) ) )  =  ( 2  x.  ( ( sin `  ( A  /  2
) )  x.  ( cos `  ( A  / 
2 ) ) ) ) )
234 sin2t 11712 . . . . . . . 8  |-  ( ( A  /  2 )  e.  CC  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
23534, 234syl 14 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
23632fveq2d 5500 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( sin `  A
) )
237233, 235, 2363eqtr2rd 2210 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  A )  =  ( ( 2  x.  ( sin `  ( A  /  2 ) ) )  x.  ( cos `  ( A  /  2
) ) ) )
238230, 237breqtrrd 4017 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  /  2
) ) )  < 
( sin `  A
) )
23919, 184, 20, 189, 238lttrd 8045 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  <  ( sin `  A
) )
2403, 19, 20, 183, 239lttrd 8045 . . 3  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  < 
( sin `  A
) )
241 sincosq1sgn 13541 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( sin `  A )  /\  0  <  ( cos `  A
) ) )
242241simprd 113 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( cos `  A
) )
243 ltmuldiv 8790 . . . 4  |-  ( ( A  e.  RR  /\  ( sin `  A )  e.  RR  /\  (
( cos `  A
)  e.  RR  /\  0  <  ( cos `  A
) ) )  -> 
( ( A  x.  ( cos `  A ) )  <  ( sin `  A )  <->  A  <  ( ( sin `  A
)  /  ( cos `  A ) ) ) )
2441, 20, 2, 242, 243syl112anc 1237 . . 3  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  ( cos `  A ) )  <  ( sin `  A
)  <->  A  <  ( ( sin `  A )  /  ( cos `  A
) ) ) )
245240, 244mpbid 146 . 2  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( ( sin `  A
)  /  ( cos `  A ) ) )
2462, 242gt0ap0d 8548 . . 3  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A ) #  0 )
247 tanvalap 11671 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
24827, 246, 247syl2anc 409 . 2  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
249245, 248breqtrrd 4017 1  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( tan `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779   RR*cxr 7953    < clt 7954    <_ cle 7955    - cmin 8090   # cap 8500    / cdiv 8589   NNcn 8878   2c2 8929   3c3 8930   4c4 8931   NN0cn0 9135   (,)cioo 9845   (,]cioc 9846   ^cexp 10475   sincsin 11607   cosccos 11608   tanctan 11609   picpi 11610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894  ax-pre-suploc 7895  ax-addf 7896  ax-mulf 7897
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-disj 3967  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-map 6628  df-pm 6629  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-ioo 9849  df-ioc 9850  df-ico 9851  df-icc 9852  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-bc 10682  df-ihash 10710  df-shft 10779  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611  df-sin 11613  df-cos 11614  df-tan 11615  df-pi 11616  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-cn 12982  df-cnp 12983  df-tx 13047  df-cncf 13352  df-limced 13419  df-dvap 13420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator