ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tangtx Unicode version

Theorem tangtx 15182
Description: The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.)
Assertion
Ref Expression
tangtx  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( tan `  A
) )

Proof of Theorem tangtx
StepHypRef Expression
1 elioore 10006 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  e.  RR )
21recoscld 11908 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  e.  RR )
31, 2remulcld 8076 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  e.  RR )
4 1re 8044 . . . . . . 7  |-  1  e.  RR
5 rehalfcl 9237 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  RR )
61, 5syl 14 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  e.  RR )
76resqcld 10810 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 2 )  e.  RR )
8 3nn 9172 . . . . . . . 8  |-  3  e.  NN
9 nndivre 9045 . . . . . . . 8  |-  ( ( ( ( A  / 
2 ) ^ 2 )  e.  RR  /\  3  e.  NN )  ->  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )
107, 8, 9sylancl 413 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 2 )  /  3 )  e.  RR )
11 resubcl 8309 . . . . . . 7  |-  ( ( 1  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
124, 10, 11sylancr 414 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
131, 12remulcld 8076 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  RR )
14 2re 9079 . . . . . . 7  |-  2  e.  RR
15 remulcl 8026 . . . . . . 7  |-  ( ( 2  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
1614, 10, 15sylancr 414 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
17 resubcl 8309 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  e.  RR )  ->  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  e.  RR )
184, 16, 17sylancr 414 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  RR )
1913, 18remulcld 8076 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  e.  RR )
201resincld 11907 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  A )  e.  RR )
2112resqcld 10810 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 )  e.  RR )
22 remulcl 8026 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 )  e.  RR )  ->  ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  e.  RR )
2314, 21, 22sylancr 414 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) )  e.  RR )
24 resubcl 8309 . . . . . . . 8  |-  ( ( ( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  e.  RR  /\  1  e.  RR )  ->  ( ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  -  1 )  e.  RR )
2523, 4, 24sylancl 413 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  -  1 )  e.  RR )
2612, 18remulcld 8076 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  e.  RR )
271recnd 8074 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  e.  CC )
28 2cn 9080 . . . . . . . . . . . 12  |-  2  e.  CC
2928a1i 9 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  2  e.  CC )
30 2ap0 9102 . . . . . . . . . . . 12  |-  2 #  0
3130a1i 9 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  2 #  0 )
3227, 29, 31divcanap2d 8838 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( A  /  2 ) )  =  A )
3332fveq2d 5565 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( 2  x.  ( A  /  2
) ) )  =  ( cos `  A
) )
346recnd 8074 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  e.  CC )
35 cos2t 11934 . . . . . . . . . 10  |-  ( ( A  /  2 )  e.  CC  ->  ( cos `  ( 2  x.  ( A  /  2
) ) )  =  ( ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 ) )
3634, 35syl 14 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( 2  x.  ( A  /  2
) ) )  =  ( ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 ) )
3733, 36eqtr3d 2231 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  =  ( ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 ) )
386recoscld 11908 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( A  / 
2 ) )  e.  RR )
3938resqcld 10810 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  ( A  /  2 ) ) ^ 2 )  e.  RR )
40 remulcl 8026 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( ( cos `  ( A  /  2 ) ) ^ 2 )  e.  RR )  ->  (
2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  e.  RR )
4114, 39, 40sylancr 414 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  e.  RR )
424a1i 9 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  1  e.  RR )
4314a1i 9 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  2  e.  RR )
44 eliooord 10022 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  A  /\  A  <  ( pi  / 
2 ) ) )
4544simpld 112 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  A )
46 2pos 9100 . . . . . . . . . . . . . . . 16  |-  0  <  2
4746a1i 9 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  2 )
481, 43, 45, 47divgt0d 8981 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( A  /  2
) )
49 pire 15130 . . . . . . . . . . . . . . . . . . 19  |-  pi  e.  RR
50 rehalfcl 9237 . . . . . . . . . . . . . . . . . . 19  |-  ( pi  e.  RR  ->  (
pi  /  2 )  e.  RR )
5149, 50mp1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
pi  /  2 )  e.  RR )
5244simprd 114 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( pi  /  2
) )
53 pigt2lt4 15128 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  <  pi  /\  pi  <  4 )
5453simpri 113 . . . . . . . . . . . . . . . . . . . . 21  |-  pi  <  4
55 2t2e4 9164 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2  x.  2 )  =  4
5654, 55breqtrri 4061 . . . . . . . . . . . . . . . . . . . 20  |-  pi  <  ( 2  x.  2 )
5714, 46pm3.2i 272 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2  e.  RR  /\  0  <  2 )
58 ltdivmul 8922 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( pi  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( pi 
/  2 )  <  2  <->  pi  <  ( 2  x.  2 ) ) )
5949, 14, 57, 58mp3an 1348 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( pi  /  2 )  <  2  <->  pi  <  ( 2  x.  2 ) )
6056, 59mpbir 146 . . . . . . . . . . . . . . . . . . 19  |-  ( pi 
/  2 )  <  2
6160a1i 9 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
pi  /  2 )  <  2 )
621, 51, 43, 52, 61lttrd 8171 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  2 )
6328mullidi 8048 . . . . . . . . . . . . . . . . 17  |-  ( 1  x.  2 )  =  2
6462, 63breqtrrdi 4076 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( 1  x.  2 ) )
65 ltdivmul2 8924 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( A  /  2 )  <  1  <->  A  <  ( 1  x.  2 ) ) )
661, 42, 43, 47, 65syl112anc 1253 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  <  1  <->  A  <  ( 1  x.  2 ) ) )
6764, 66mpbird 167 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  <  1 )
686, 42, 67ltled 8164 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  <_ 
1 )
69 0xr 8092 . . . . . . . . . . . . . . 15  |-  0  e.  RR*
70 elioc2 10030 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
( A  /  2
)  e.  ( 0 (,] 1 )  <->  ( ( A  /  2 )  e.  RR  /\  0  < 
( A  /  2
)  /\  ( A  /  2 )  <_ 
1 ) ) )
7169, 4, 70mp2an 426 . . . . . . . . . . . . . 14  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  <->  ( ( A  /  2 )  e.  RR  /\  0  < 
( A  /  2
)  /\  ( A  /  2 )  <_ 
1 ) )
726, 48, 68, 71syl3anbrc 1183 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  e.  ( 0 (,] 1
) )
73 cos01bnd 11942 . . . . . . . . . . . . 13  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( cos `  ( A  /  2
) )  /\  ( cos `  ( A  / 
2 ) )  < 
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
7472, 73syl 14 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( cos `  ( A  /  2
) )  /\  ( cos `  ( A  / 
2 ) )  < 
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
7574simprd 114 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( A  / 
2 ) )  < 
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )
76 cos01gt0 11947 . . . . . . . . . . . . . 14  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  0  <  ( cos `  ( A  /  2 ) ) )
7772, 76syl 14 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( cos `  ( A  /  2 ) ) )
78 0re 8045 . . . . . . . . . . . . . 14  |-  0  e.  RR
79 ltle 8133 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( cos `  ( A  /  2 ) )  e.  RR )  -> 
( 0  <  ( cos `  ( A  / 
2 ) )  -> 
0  <_  ( cos `  ( A  /  2
) ) ) )
8078, 38, 79sylancr 414 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( cos `  ( A  /  2
) )  ->  0  <_  ( cos `  ( A  /  2 ) ) ) )
8177, 80mpd 13 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <_  ( cos `  ( A  /  2 ) ) )
8278a1i 9 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  e.  RR )
8382, 38, 12, 77, 75lttrd 8171 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )
8482, 12, 83ltled 8164 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <_  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )
8538, 12, 81, 84lt2sqd 10815 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  ( A  /  2 ) )  <  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  <->  ( ( cos `  ( A  / 
2 ) ) ^
2 )  <  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) ) )
8675, 85mpbid 147 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  ( A  /  2 ) ) ^ 2 )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )
87 ltmul2 8902 . . . . . . . . . . 11  |-  ( ( ( ( cos `  ( A  /  2 ) ) ^ 2 )  e.  RR  /\  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( ( cos `  ( A  /  2
) ) ^ 2 )  <  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 )  <->  ( 2  x.  ( ( cos `  ( A  /  2
) ) ^ 2 ) )  <  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) ) ) )
8839, 21, 43, 47, 87syl112anc 1253 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( cos `  ( A  /  2 ) ) ^ 2 )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 )  <->  ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  <  ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) ) ) )
8986, 88mpbid 147 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  <  ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) ) )
9041, 23, 42, 89ltsub1dd 8603 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 )  < 
( ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  -  1 ) )
9137, 90eqbrtrd 4056 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  < 
( ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  -  1 ) )
92 3re 9083 . . . . . . . . . 10  |-  3  e.  RR
93 remulcl 8026 . . . . . . . . . 10  |-  ( ( 3  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 3  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
9492, 10, 93sylancr 414 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
95 4re 9086 . . . . . . . . . 10  |-  4  e.  RR
96 remulcl 8026 . . . . . . . . . 10  |-  ( ( 4  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 4  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
9795, 10, 96sylancr 414 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
9810resqcld 10810 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 )  e.  RR )
99 remulcl 8026 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 )  e.  RR )  ->  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) )  e.  RR )
10014, 98, 99sylancr 414 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  e.  RR )
101 readdcl 8024 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) )  e.  RR )  ->  ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  e.  RR )
1024, 100, 101sylancr 414 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  e.  RR )
103 3lt4 9182 . . . . . . . . . 10  |-  3  <  4
10492a1i 9 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  3  e.  RR )
10595a1i 9 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  4  e.  RR )
1066, 48gt0ap0d 8675 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 ) #  0 )
1076, 106sqgt0apd 10812 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( ( A  / 
2 ) ^ 2 ) )
108 3pos 9103 . . . . . . . . . . . . 13  |-  0  <  3
109108a1i 9 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  3 )
1107, 104, 107, 109divgt0d 8981 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( ( ( A  /  2 ) ^
2 )  /  3
) )
111 ltmul1 8638 . . . . . . . . . . 11  |-  ( ( 3  e.  RR  /\  4  e.  RR  /\  (
( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR  /\  0  <  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  ->  ( 3  <  4  <->  ( 3  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  <  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) )
112104, 105, 10, 110, 111syl112anc 1253 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  <  4  <->  ( 3  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  < 
( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
113103, 112mpbii 148 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  <  ( 4  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
11494, 97, 102, 113ltsub2dd 8604 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 4  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  <  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 3  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
11542recnd 8074 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  1  e.  CC )
116 ax-1cn 7991 . . . . . . . . . . 11  |-  1  e.  CC
117100recnd 8074 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  e.  CC )
118 addcl 8023 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) )  e.  CC )  ->  ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  e.  CC )
119116, 117, 118sylancr 414 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  e.  CC )
12097recnd 8074 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  CC )
121119, 120subcld 8356 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 4  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  CC )
122 sq1 10744 . . . . . . . . . . . . . . 15  |-  ( 1 ^ 2 )  =  1
123122a1i 9 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1 ^ 2 )  =  1 )
12410recnd 8074 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 2 )  /  3 )  e.  CC )
125124mulid2d 8064 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )
126125oveq2d 5941 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 1  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
127123, 126oveq12d 5943 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1 ^ 2 )  -  ( 2  x.  ( 1  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
128127oveq1d 5940 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( 1 ^ 2 )  -  (
2  x.  ( 1  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  =  ( ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
129 binom2sub 10764 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  CC )  ->  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ^
2 )  =  ( ( ( 1 ^ 2 )  -  (
2  x.  ( 1  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )
130116, 124, 129sylancr 414 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 )  =  ( ( ( 1 ^ 2 )  -  ( 2  x.  ( 1  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
13198recnd 8074 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 )  e.  CC )
13216recnd 8074 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  CC )
133115, 131, 132addsubd 8377 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( ( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) )  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
134128, 130, 1333eqtr4d 2239 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 )  =  ( ( 1  +  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) )  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
135134oveq2d 5941 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) )  =  ( 2  x.  ( ( 1  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) )  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
136 addcl 8023 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 )  e.  CC )  ->  ( 1  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) )  e.  CC )
137116, 131, 136sylancr 414 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  e.  CC )
13829, 137, 132subdid 8459 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 2  x.  ( 1  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 2  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
13929, 115, 131adddid 8070 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 1  +  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( ( 2  x.  1 )  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )
1401162timesi 9139 . . . . . . . . . . . . . . 15  |-  ( 2  x.  1 )  =  ( 1  +  1 )
141140oveq1i 5935 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  1 )  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  =  ( ( 1  +  1 )  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )
142115, 115, 117addassd 8068 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  1 )  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( 1  +  ( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
143141, 142eqtrid 2241 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  1 )  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( 1  +  ( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
144139, 143eqtrd 2229 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 1  +  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( 1  +  ( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
14529, 29, 124mulassd 8069 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  2 )  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( 2  x.  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
14655oveq1i 5935 . . . . . . . . . . . . 13  |-  ( ( 2  x.  2 )  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  =  ( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )
147145, 146eqtr3di 2244 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 4  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
148144, 147oveq12d 5943 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 2  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 1  +  ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )  -  ( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
149115, 119, 120, 148assraddsubd 8413 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 2  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( 1  +  ( ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  -  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
150135, 138, 1493eqtrd 2233 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) )  =  ( 1  +  ( ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  -  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
151115, 121, 150mvrladdd 8412 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  -  1 )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
152 subcl 8244 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  CC )  ->  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  CC )
153116, 124, 152sylancr 414 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  CC )
154153, 115, 132subdid 8459 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  1 )  -  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
155153mulridd 8062 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  1 )  =  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
156115, 124, 132subdird 8460 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 1  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  -  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
157132mulid2d 8064 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
158124, 29, 124mul12d 8197 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
)  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
159124sqvald 10781 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
160159oveq2d 5941 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  =  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
161158, 160eqtr4d 2232 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
)  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
162157, 161oveq12d 5943 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  -  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 )  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  -  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )
163156, 162eqtrd 2229 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  -  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )
164155, 163oveq12d 5943 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  1 )  -  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  -  ( ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  -  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
165115, 124, 132, 117subadd4d 8404 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  -  ( ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  -  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  +  ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
166 df-3 9069 . . . . . . . . . . . . . 14  |-  3  =  ( 2  +  1 )
16728, 116addcomi 8189 . . . . . . . . . . . . . 14  |-  ( 2  +  1 )  =  ( 1  +  2 )
168166, 167eqtri 2217 . . . . . . . . . . . . 13  |-  3  =  ( 1  +  2 )
169168oveq1i 5935 . . . . . . . . . . . 12  |-  ( 3  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  =  ( ( 1  +  2 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )
170125oveq1d 5940 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  +  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  +  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
171115, 124, 29, 170joinlmuladdmuld 8073 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  2 )  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  +  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
172169, 171eqtrid 2241 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  +  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
173172oveq2d 5941 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 3  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  +  ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
174165, 173eqtr4d 2232 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  -  ( ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  -  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 3  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
175154, 164, 1743eqtrd 2233 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 3  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
176114, 151, 1753brtr4d 4066 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  -  1 )  <  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  x.  ( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
1772, 25, 26, 91, 176lttrd 8171 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) )
178 ltmul2 8902 . . . . . . 7  |-  ( ( ( cos `  A
)  e.  RR  /\  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  ->  ( ( cos `  A )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  <->  ( A  x.  ( cos `  A ) )  <  ( A  x.  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  x.  ( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) ) ) )
1792, 26, 1, 45, 178syl112anc 1253 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  A
)  <  ( (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )  <->  ( A  x.  ( cos `  A
) )  <  ( A  x.  ( (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) ) ) ) )
180177, 179mpbid 147 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  < 
( A  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) ) ) )
18118recnd 8074 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  CC )
18227, 153, 181mulassd 8069 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( A  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) ) )
183180, 182breqtrrd 4062 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  < 
( ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) )
18413, 38remulcld 8076 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  /  2
) ) )  e.  RR )
18574simpld 112 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  <  ( cos `  ( A  /  2 ) ) )
1861, 12, 45, 83mulgt0d 8168 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) )
187 ltmul2 8902 . . . . . . 7  |-  ( ( ( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  e.  RR  /\  ( cos `  ( A  /  2 ) )  e.  RR  /\  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  e.  RR  /\  0  <  ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) ) )  ->  ( ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  < 
( cos `  ( A  /  2 ) )  <-> 
( ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  <  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
18818, 38, 13, 186, 187syl112anc 1253 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( cos `  ( A  /  2
) )  <->  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  x.  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )  < 
( ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  / 
2 ) ) ) ) )
189185, 188mpbid 147 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  <  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  x.  ( cos `  ( A  /  2 ) ) ) )
19029, 34, 153mulassd 8069 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  ( A  /  2 ) )  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  =  ( 2  x.  (
( A  /  2
)  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) )
19132oveq1d 5940 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  ( A  /  2 ) )  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  =  ( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) )
19234, 115, 124subdid 8459 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( ( A  /  2 )  x.  1 )  -  ( ( A  / 
2 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
19334mulridd 8062 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  1 )  =  ( A  / 
2 ) )
194166oveq2i 5936 . . . . . . . . . . . . . . . 16  |-  ( ( A  /  2 ) ^ 3 )  =  ( ( A  / 
2 ) ^ (
2  +  1 ) )
195 2nn0 9285 . . . . . . . . . . . . . . . . 17  |-  2  e.  NN0
196 expp1 10657 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  /  2
)  e.  CC  /\  2  e.  NN0 )  -> 
( ( A  / 
2 ) ^ (
2  +  1 ) )  =  ( ( ( A  /  2
) ^ 2 )  x.  ( A  / 
2 ) ) )
19734, 195, 196sylancl 413 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ ( 2  +  1 ) )  =  ( ( ( A  /  2 ) ^ 2 )  x.  ( A  /  2
) ) )
198194, 197eqtrid 2241 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 3 )  =  ( ( ( A  /  2 ) ^ 2 )  x.  ( A  /  2
) ) )
1997recnd 8074 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 2 )  e.  CC )
200199, 34mulcomd 8067 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 2 )  x.  ( A  /  2 ) )  =  ( ( A  /  2 )  x.  ( ( A  / 
2 ) ^ 2 ) ) )
201198, 200eqtrd 2229 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 3 )  =  ( ( A  /  2 )  x.  ( ( A  / 
2 ) ^ 2 ) ) )
202201oveq1d 5940 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 3 )  /  3 )  =  ( ( ( A  /  2 )  x.  ( ( A  /  2 ) ^
2 ) )  / 
3 ) )
203 3cn 9084 . . . . . . . . . . . . . . 15  |-  3  e.  CC
204203a1i 9 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  3  e.  CC )
205104, 109gt0ap0d 8675 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  3 #  0 )
20634, 199, 204, 205divassapd 8872 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  x.  (
( A  /  2
) ^ 2 ) )  /  3 )  =  ( ( A  /  2 )  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
207202, 206eqtr2d 2230 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( A  /  2 ) ^ 3 )  / 
3 ) )
208193, 207oveq12d 5943 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  x.  1 )  -  ( ( A  /  2 )  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^
3 )  /  3
) ) )
209192, 208eqtrd 2229 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^
3 )  /  3
) ) )
210209oveq2d 5941 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( A  /  2 )  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( 2  x.  ( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) ) ) )
211190, 191, 2103eqtr3d 2237 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) ) ) )
212 sin01bnd 11941 . . . . . . . . . . 11  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  (
( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2
) )  /\  ( sin `  ( A  / 
2 ) )  < 
( A  /  2
) ) )
21372, 212syl 14 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2
) )  /\  ( sin `  ( A  / 
2 ) )  < 
( A  /  2
) ) )
214213simpld 112 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  -  ( ( ( A  /  2
) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2 ) ) )
215 3nn0 9286 . . . . . . . . . . . . 13  |-  3  e.  NN0
216 reexpcl 10667 . . . . . . . . . . . . 13  |-  ( ( ( A  /  2
)  e.  RR  /\  3  e.  NN0 )  -> 
( ( A  / 
2 ) ^ 3 )  e.  RR )
2176, 215, 216sylancl 413 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 3 )  e.  RR )
218 nndivre 9045 . . . . . . . . . . . 12  |-  ( ( ( ( A  / 
2 ) ^ 3 )  e.  RR  /\  3  e.  NN )  ->  ( ( ( A  /  2 ) ^
3 )  /  3
)  e.  RR )
219217, 8, 218sylancl 413 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 3 )  /  3 )  e.  RR )
2206, 219resubcld 8426 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  -  ( ( ( A  /  2
) ^ 3 )  /  3 ) )  e.  RR )
2216resincld 11907 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( A  / 
2 ) )  e.  RR )
222 ltmul2 8902 . . . . . . . . . 10  |-  ( ( ( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  e.  RR  /\  ( sin `  ( A  /  2 ) )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^ 3 )  / 
3 ) )  < 
( sin `  ( A  /  2 ) )  <-> 
( 2  x.  (
( A  /  2
)  -  ( ( ( A  /  2
) ^ 3 )  /  3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) ) ) )
223220, 221, 43, 47, 222syl112anc 1253 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2
) )  <->  ( 2  x.  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^
3 )  /  3
) ) )  < 
( 2  x.  ( sin `  ( A  / 
2 ) ) ) ) )
224214, 223mpbid 147 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^ 3 )  / 
3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) ) )
225211, 224eqbrtrd 4056 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) ) )
226 remulcl 8026 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( sin `  ( A  /  2 ) )  e.  RR )  -> 
( 2  x.  ( sin `  ( A  / 
2 ) ) )  e.  RR )
22714, 221, 226sylancr 414 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( sin `  ( A  /  2
) ) )  e.  RR )
228 ltmul1 8638 . . . . . . . 8  |-  ( ( ( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  e.  RR  /\  ( 2  x.  ( sin `  ( A  / 
2 ) ) )  e.  RR  /\  (
( cos `  ( A  /  2 ) )  e.  RR  /\  0  <  ( cos `  ( A  /  2 ) ) ) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) )  <->  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  x.  ( cos `  ( A  /  2 ) ) )  <  ( ( 2  x.  ( sin `  ( A  /  2
) ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
22913, 227, 38, 77, 228syl112anc 1253 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) )  <->  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  x.  ( cos `  ( A  /  2 ) ) )  <  ( ( 2  x.  ( sin `  ( A  /  2
) ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
230225, 229mpbid 147 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  /  2
) ) )  < 
( ( 2  x.  ( sin `  ( A  /  2 ) ) )  x.  ( cos `  ( A  /  2
) ) ) )
231221recnd 8074 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( A  / 
2 ) )  e.  CC )
23238recnd 8074 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( A  / 
2 ) )  e.  CC )
23329, 231, 232mulassd 8069 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  ( sin `  ( A  / 
2 ) ) )  x.  ( cos `  ( A  /  2 ) ) )  =  ( 2  x.  ( ( sin `  ( A  /  2
) )  x.  ( cos `  ( A  / 
2 ) ) ) ) )
234 sin2t 11933 . . . . . . . 8  |-  ( ( A  /  2 )  e.  CC  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
23534, 234syl 14 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
23632fveq2d 5565 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( sin `  A
) )
237233, 235, 2363eqtr2rd 2236 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  A )  =  ( ( 2  x.  ( sin `  ( A  /  2 ) ) )  x.  ( cos `  ( A  /  2
) ) ) )
238230, 237breqtrrd 4062 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  /  2
) ) )  < 
( sin `  A
) )
23919, 184, 20, 189, 238lttrd 8171 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  <  ( sin `  A
) )
2403, 19, 20, 183, 239lttrd 8171 . . 3  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  < 
( sin `  A
) )
241 sincosq1sgn 15170 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( sin `  A )  /\  0  <  ( cos `  A
) ) )
242241simprd 114 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( cos `  A
) )
243 ltmuldiv 8920 . . . 4  |-  ( ( A  e.  RR  /\  ( sin `  A )  e.  RR  /\  (
( cos `  A
)  e.  RR  /\  0  <  ( cos `  A
) ) )  -> 
( ( A  x.  ( cos `  A ) )  <  ( sin `  A )  <->  A  <  ( ( sin `  A
)  /  ( cos `  A ) ) ) )
2441, 20, 2, 242, 243syl112anc 1253 . . 3  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  ( cos `  A ) )  <  ( sin `  A
)  <->  A  <  ( ( sin `  A )  /  ( cos `  A
) ) ) )
245240, 244mpbid 147 . 2  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( ( sin `  A
)  /  ( cos `  A ) ) )
2462, 242gt0ap0d 8675 . . 3  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A ) #  0 )
247 tanvalap 11892 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
24827, 246, 247syl2anc 411 . 2  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
249245, 248breqtrrd 4062 1  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( tan `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7896   RRcr 7897   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903   RR*cxr 8079    < clt 8080    <_ cle 8081    - cmin 8216   # cap 8627    / cdiv 8718   NNcn 9009   2c2 9060   3c3 9061   4c4 9062   NN0cn0 9268   (,)cioo 9982   (,]cioc 9983   ^cexp 10649   sincsin 11828   cosccos 11829   tanctan 11830   picpi 11831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-pre-suploc 8019  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-ioo 9986  df-ioc 9987  df-ico 9988  df-icc 9989  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-fac 10837  df-bc 10859  df-ihash 10887  df-shft 10999  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538  df-ef 11832  df-sin 11834  df-cos 11835  df-tan 11836  df-pi 11837  df-rest 12945  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14342  df-topon 14355  df-bases 14387  df-ntr 14440  df-cn 14532  df-cnp 14533  df-tx 14597  df-cncf 14915  df-limced 15000  df-dvap 15001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator