ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fztpval Unicode version

Theorem fztpval 10279
Description: Two ways of defining the first three values of a sequence on 
NN. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
fztpval  |-  ( A. x  e.  ( 1 ... 3 ) ( F `  x )  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( ( F `  1 )  =  A  /\  ( F `  2 )  =  B  /\  ( F `  3 )  =  C ) )
Distinct variable groups:    x, A    x, B    x, C    x, F

Proof of Theorem fztpval
StepHypRef Expression
1 1z 9472 . . . . 5  |-  1  e.  ZZ
2 fztp 10274 . . . . 5  |-  ( 1  e.  ZZ  ->  (
1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) } )
31, 2ax-mp 5 . . . 4  |-  ( 1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }
4 df-3 9170 . . . . . 6  |-  3  =  ( 2  +  1 )
5 2cn 9181 . . . . . . 7  |-  2  e.  CC
6 ax-1cn 8092 . . . . . . 7  |-  1  e.  CC
75, 6addcomi 8290 . . . . . 6  |-  ( 2  +  1 )  =  ( 1  +  2 )
84, 7eqtri 2250 . . . . 5  |-  3  =  ( 1  +  2 )
98oveq2i 6012 . . . 4  |-  ( 1 ... 3 )  =  ( 1 ... (
1  +  2 ) )
10 tpeq3 3754 . . . . . 6  |-  ( 3  =  ( 1  +  2 )  ->  { 1 ,  2 ,  3 }  =  { 1 ,  2 ,  ( 1  +  2 ) } )
118, 10ax-mp 5 . . . . 5  |-  { 1 ,  2 ,  3 }  =  { 1 ,  2 ,  ( 1  +  2 ) }
12 df-2 9169 . . . . . 6  |-  2  =  ( 1  +  1 )
13 tpeq2 3753 . . . . . 6  |-  ( 2  =  ( 1  +  1 )  ->  { 1 ,  2 ,  ( 1  +  2 ) }  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) } )
1412, 13ax-mp 5 . . . . 5  |-  { 1 ,  2 ,  ( 1  +  2 ) }  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }
1511, 14eqtri 2250 . . . 4  |-  { 1 ,  2 ,  3 }  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }
163, 9, 153eqtr4i 2260 . . 3  |-  ( 1 ... 3 )  =  { 1 ,  2 ,  3 }
1716raleqi 2732 . 2  |-  ( A. x  e.  ( 1 ... 3 ) ( F `  x )  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  A. x  e.  { 1 ,  2 ,  3 }  ( F `  x )  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C
) ) )
18 1ex 8141 . . 3  |-  1  e.  _V
19 2ex 9182 . . 3  |-  2  e.  _V
20 3ex 9186 . . 3  |-  3  e.  _V
21 fveq2 5627 . . . 4  |-  ( x  =  1  ->  ( F `  x )  =  ( F ` 
1 ) )
22 iftrue 3607 . . . 4  |-  ( x  =  1  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  A )
2321, 22eqeq12d 2244 . . 3  |-  ( x  =  1  ->  (
( F `  x
)  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( F ` 
1 )  =  A ) )
24 fveq2 5627 . . . 4  |-  ( x  =  2  ->  ( F `  x )  =  ( F ` 
2 ) )
25 1re 8145 . . . . . . . 8  |-  1  e.  RR
26 1lt2 9280 . . . . . . . 8  |-  1  <  2
2725, 26gtneii 8242 . . . . . . 7  |-  2  =/=  1
28 neeq1 2413 . . . . . . 7  |-  ( x  =  2  ->  (
x  =/=  1  <->  2  =/=  1 ) )
2927, 28mpbiri 168 . . . . . 6  |-  ( x  =  2  ->  x  =/=  1 )
30 ifnefalse 3613 . . . . . 6  |-  ( x  =/=  1  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  if ( x  =  2 ,  B ,  C ) )
3129, 30syl 14 . . . . 5  |-  ( x  =  2  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  if ( x  =  2 ,  B ,  C ) )
32 iftrue 3607 . . . . 5  |-  ( x  =  2  ->  if ( x  =  2 ,  B ,  C )  =  B )
3331, 32eqtrd 2262 . . . 4  |-  ( x  =  2  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  B )
3424, 33eqeq12d 2244 . . 3  |-  ( x  =  2  ->  (
( F `  x
)  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( F ` 
2 )  =  B ) )
35 fveq2 5627 . . . 4  |-  ( x  =  3  ->  ( F `  x )  =  ( F ` 
3 ) )
36 1lt3 9282 . . . . . . . 8  |-  1  <  3
3725, 36gtneii 8242 . . . . . . 7  |-  3  =/=  1
38 neeq1 2413 . . . . . . 7  |-  ( x  =  3  ->  (
x  =/=  1  <->  3  =/=  1 ) )
3937, 38mpbiri 168 . . . . . 6  |-  ( x  =  3  ->  x  =/=  1 )
4039, 30syl 14 . . . . 5  |-  ( x  =  3  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  if ( x  =  2 ,  B ,  C ) )
41 2re 9180 . . . . . . . 8  |-  2  e.  RR
42 2lt3 9281 . . . . . . . 8  |-  2  <  3
4341, 42gtneii 8242 . . . . . . 7  |-  3  =/=  2
44 neeq1 2413 . . . . . . 7  |-  ( x  =  3  ->  (
x  =/=  2  <->  3  =/=  2 ) )
4543, 44mpbiri 168 . . . . . 6  |-  ( x  =  3  ->  x  =/=  2 )
46 ifnefalse 3613 . . . . . 6  |-  ( x  =/=  2  ->  if ( x  =  2 ,  B ,  C )  =  C )
4745, 46syl 14 . . . . 5  |-  ( x  =  3  ->  if ( x  =  2 ,  B ,  C )  =  C )
4840, 47eqtrd 2262 . . . 4  |-  ( x  =  3  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  C )
4935, 48eqeq12d 2244 . . 3  |-  ( x  =  3  ->  (
( F `  x
)  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( F ` 
3 )  =  C ) )
5018, 19, 20, 23, 34, 49raltp 3723 . 2  |-  ( A. x  e.  { 1 ,  2 ,  3 }  ( F `  x )  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( ( F `
 1 )  =  A  /\  ( F `
 2 )  =  B  /\  ( F `
 3 )  =  C ) )
5117, 50bitri 184 1  |-  ( A. x  e.  ( 1 ... 3 ) ( F `  x )  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( ( F `  1 )  =  A  /\  ( F `  2 )  =  B  /\  ( F `  3 )  =  C ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   ifcif 3602   {ctp 3668   ` cfv 5318  (class class class)co 6001   1c1 8000    + caddc 8002   2c2 9161   3c3 9162   ZZcz 9446   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-3 9170  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator