ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fztpval Unicode version

Theorem fztpval 10085
Description: Two ways of defining the first three values of a sequence on 
NN. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
fztpval  |-  ( A. x  e.  ( 1 ... 3 ) ( F `  x )  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( ( F `  1 )  =  A  /\  ( F `  2 )  =  B  /\  ( F `  3 )  =  C ) )
Distinct variable groups:    x, A    x, B    x, C    x, F

Proof of Theorem fztpval
StepHypRef Expression
1 1z 9281 . . . . 5  |-  1  e.  ZZ
2 fztp 10080 . . . . 5  |-  ( 1  e.  ZZ  ->  (
1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) } )
31, 2ax-mp 5 . . . 4  |-  ( 1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }
4 df-3 8981 . . . . . 6  |-  3  =  ( 2  +  1 )
5 2cn 8992 . . . . . . 7  |-  2  e.  CC
6 ax-1cn 7906 . . . . . . 7  |-  1  e.  CC
75, 6addcomi 8103 . . . . . 6  |-  ( 2  +  1 )  =  ( 1  +  2 )
84, 7eqtri 2198 . . . . 5  |-  3  =  ( 1  +  2 )
98oveq2i 5888 . . . 4  |-  ( 1 ... 3 )  =  ( 1 ... (
1  +  2 ) )
10 tpeq3 3682 . . . . . 6  |-  ( 3  =  ( 1  +  2 )  ->  { 1 ,  2 ,  3 }  =  { 1 ,  2 ,  ( 1  +  2 ) } )
118, 10ax-mp 5 . . . . 5  |-  { 1 ,  2 ,  3 }  =  { 1 ,  2 ,  ( 1  +  2 ) }
12 df-2 8980 . . . . . 6  |-  2  =  ( 1  +  1 )
13 tpeq2 3681 . . . . . 6  |-  ( 2  =  ( 1  +  1 )  ->  { 1 ,  2 ,  ( 1  +  2 ) }  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) } )
1412, 13ax-mp 5 . . . . 5  |-  { 1 ,  2 ,  ( 1  +  2 ) }  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }
1511, 14eqtri 2198 . . . 4  |-  { 1 ,  2 ,  3 }  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }
163, 9, 153eqtr4i 2208 . . 3  |-  ( 1 ... 3 )  =  { 1 ,  2 ,  3 }
1716raleqi 2677 . 2  |-  ( A. x  e.  ( 1 ... 3 ) ( F `  x )  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  A. x  e.  { 1 ,  2 ,  3 }  ( F `  x )  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C
) ) )
18 1ex 7954 . . 3  |-  1  e.  _V
19 2ex 8993 . . 3  |-  2  e.  _V
20 3ex 8997 . . 3  |-  3  e.  _V
21 fveq2 5517 . . . 4  |-  ( x  =  1  ->  ( F `  x )  =  ( F ` 
1 ) )
22 iftrue 3541 . . . 4  |-  ( x  =  1  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  A )
2321, 22eqeq12d 2192 . . 3  |-  ( x  =  1  ->  (
( F `  x
)  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( F ` 
1 )  =  A ) )
24 fveq2 5517 . . . 4  |-  ( x  =  2  ->  ( F `  x )  =  ( F ` 
2 ) )
25 1re 7958 . . . . . . . 8  |-  1  e.  RR
26 1lt2 9090 . . . . . . . 8  |-  1  <  2
2725, 26gtneii 8055 . . . . . . 7  |-  2  =/=  1
28 neeq1 2360 . . . . . . 7  |-  ( x  =  2  ->  (
x  =/=  1  <->  2  =/=  1 ) )
2927, 28mpbiri 168 . . . . . 6  |-  ( x  =  2  ->  x  =/=  1 )
30 ifnefalse 3547 . . . . . 6  |-  ( x  =/=  1  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  if ( x  =  2 ,  B ,  C ) )
3129, 30syl 14 . . . . 5  |-  ( x  =  2  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  if ( x  =  2 ,  B ,  C ) )
32 iftrue 3541 . . . . 5  |-  ( x  =  2  ->  if ( x  =  2 ,  B ,  C )  =  B )
3331, 32eqtrd 2210 . . . 4  |-  ( x  =  2  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  B )
3424, 33eqeq12d 2192 . . 3  |-  ( x  =  2  ->  (
( F `  x
)  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( F ` 
2 )  =  B ) )
35 fveq2 5517 . . . 4  |-  ( x  =  3  ->  ( F `  x )  =  ( F ` 
3 ) )
36 1lt3 9092 . . . . . . . 8  |-  1  <  3
3725, 36gtneii 8055 . . . . . . 7  |-  3  =/=  1
38 neeq1 2360 . . . . . . 7  |-  ( x  =  3  ->  (
x  =/=  1  <->  3  =/=  1 ) )
3937, 38mpbiri 168 . . . . . 6  |-  ( x  =  3  ->  x  =/=  1 )
4039, 30syl 14 . . . . 5  |-  ( x  =  3  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  if ( x  =  2 ,  B ,  C ) )
41 2re 8991 . . . . . . . 8  |-  2  e.  RR
42 2lt3 9091 . . . . . . . 8  |-  2  <  3
4341, 42gtneii 8055 . . . . . . 7  |-  3  =/=  2
44 neeq1 2360 . . . . . . 7  |-  ( x  =  3  ->  (
x  =/=  2  <->  3  =/=  2 ) )
4543, 44mpbiri 168 . . . . . 6  |-  ( x  =  3  ->  x  =/=  2 )
46 ifnefalse 3547 . . . . . 6  |-  ( x  =/=  2  ->  if ( x  =  2 ,  B ,  C )  =  C )
4745, 46syl 14 . . . . 5  |-  ( x  =  3  ->  if ( x  =  2 ,  B ,  C )  =  C )
4840, 47eqtrd 2210 . . . 4  |-  ( x  =  3  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  C )
4935, 48eqeq12d 2192 . . 3  |-  ( x  =  3  ->  (
( F `  x
)  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( F ` 
3 )  =  C ) )
5018, 19, 20, 23, 34, 49raltp 3651 . 2  |-  ( A. x  e.  { 1 ,  2 ,  3 }  ( F `  x )  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( ( F `
 1 )  =  A  /\  ( F `
 2 )  =  B  /\  ( F `
 3 )  =  C ) )
5117, 50bitri 184 1  |-  ( A. x  e.  ( 1 ... 3 ) ( F `  x )  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( ( F `  1 )  =  A  /\  ( F `  2 )  =  B  /\  ( F `  3 )  =  C ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   ifcif 3536   {ctp 3596   ` cfv 5218  (class class class)co 5877   1c1 7814    + caddc 7816   2c2 8972   3c3 8973   ZZcz 9255   ...cfz 10010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-tp 3602  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-2 8980  df-3 8981  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator