| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fztpval | Unicode version | ||
| Description: Two ways of defining the
first three values of a sequence on |
| Ref | Expression |
|---|---|
| fztpval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9472 |
. . . . 5
| |
| 2 | fztp 10274 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | df-3 9170 |
. . . . . 6
| |
| 5 | 2cn 9181 |
. . . . . . 7
| |
| 6 | ax-1cn 8092 |
. . . . . . 7
| |
| 7 | 5, 6 | addcomi 8290 |
. . . . . 6
|
| 8 | 4, 7 | eqtri 2250 |
. . . . 5
|
| 9 | 8 | oveq2i 6012 |
. . . 4
|
| 10 | tpeq3 3754 |
. . . . . 6
| |
| 11 | 8, 10 | ax-mp 5 |
. . . . 5
|
| 12 | df-2 9169 |
. . . . . 6
| |
| 13 | tpeq2 3753 |
. . . . . 6
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . 5
|
| 15 | 11, 14 | eqtri 2250 |
. . . 4
|
| 16 | 3, 9, 15 | 3eqtr4i 2260 |
. . 3
|
| 17 | 16 | raleqi 2732 |
. 2
|
| 18 | 1ex 8141 |
. . 3
| |
| 19 | 2ex 9182 |
. . 3
| |
| 20 | 3ex 9186 |
. . 3
| |
| 21 | fveq2 5627 |
. . . 4
| |
| 22 | iftrue 3607 |
. . . 4
| |
| 23 | 21, 22 | eqeq12d 2244 |
. . 3
|
| 24 | fveq2 5627 |
. . . 4
| |
| 25 | 1re 8145 |
. . . . . . . 8
| |
| 26 | 1lt2 9280 |
. . . . . . . 8
| |
| 27 | 25, 26 | gtneii 8242 |
. . . . . . 7
|
| 28 | neeq1 2413 |
. . . . . . 7
| |
| 29 | 27, 28 | mpbiri 168 |
. . . . . 6
|
| 30 | ifnefalse 3613 |
. . . . . 6
| |
| 31 | 29, 30 | syl 14 |
. . . . 5
|
| 32 | iftrue 3607 |
. . . . 5
| |
| 33 | 31, 32 | eqtrd 2262 |
. . . 4
|
| 34 | 24, 33 | eqeq12d 2244 |
. . 3
|
| 35 | fveq2 5627 |
. . . 4
| |
| 36 | 1lt3 9282 |
. . . . . . . 8
| |
| 37 | 25, 36 | gtneii 8242 |
. . . . . . 7
|
| 38 | neeq1 2413 |
. . . . . . 7
| |
| 39 | 37, 38 | mpbiri 168 |
. . . . . 6
|
| 40 | 39, 30 | syl 14 |
. . . . 5
|
| 41 | 2re 9180 |
. . . . . . . 8
| |
| 42 | 2lt3 9281 |
. . . . . . . 8
| |
| 43 | 41, 42 | gtneii 8242 |
. . . . . . 7
|
| 44 | neeq1 2413 |
. . . . . . 7
| |
| 45 | 43, 44 | mpbiri 168 |
. . . . . 6
|
| 46 | ifnefalse 3613 |
. . . . . 6
| |
| 47 | 45, 46 | syl 14 |
. . . . 5
|
| 48 | 40, 47 | eqtrd 2262 |
. . . 4
|
| 49 | 35, 48 | eqeq12d 2244 |
. . 3
|
| 50 | 18, 19, 20, 23, 34, 49 | raltp 3723 |
. 2
|
| 51 | 17, 50 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-2 9169 df-3 9170 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |