Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid2i | Unicode version |
Description: is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 |
Ref | Expression |
---|---|
addid2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 | |
2 | addid2 8033 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 (class class class)co 5841 cc 7747 cc0 7749 caddc 7752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1cn 7842 ax-icn 7844 ax-addcl 7845 ax-mulcl 7847 ax-addcom 7849 ax-i2m1 7854 ax-0id 7857 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: ine0 8288 inelr 8478 muleqadd 8561 0p1e1 8967 iap0 9076 num0h 9329 nummul1c 9366 decrmac 9375 decmul1 9381 fz0tp 10053 fz0to4untppr 10055 fzo0to3tp 10150 rei 10837 imi 10838 resqrexlemover 10948 ef01bndlem 11693 efhalfpi 13320 sinq34lt0t 13352 ex-fac 13569 |
Copyright terms: Public domain | W3C validator |