![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addid2i | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
mul.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addid2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | addlid 8110 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-4 1520 ax-17 1536 ax-ial 1544 ax-ext 2169 ax-1cn 7918 ax-icn 7920 ax-addcl 7921 ax-mulcl 7923 ax-addcom 7925 ax-i2m1 7930 ax-0id 7933 |
This theorem depends on definitions: df-bi 117 df-cleq 2180 df-clel 2183 |
This theorem is referenced by: ine0 8365 inelr 8555 muleqadd 8639 0p1e1 9047 iap0 9156 num0h 9409 nummul1c 9446 decrmac 9455 decmul1 9461 fz0tp 10136 fz0to4untppr 10138 fzo0to3tp 10233 rei 10922 imi 10923 resqrexlemover 11033 ef01bndlem 11778 efhalfpi 14573 sinq34lt0t 14605 ex-fac 14833 |
Copyright terms: Public domain | W3C validator |