Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid2i | Unicode version |
Description: is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 |
Ref | Expression |
---|---|
addid2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 | |
2 | addid2 8058 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 cc0 7774 caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-addcom 7874 ax-i2m1 7879 ax-0id 7882 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: ine0 8313 inelr 8503 muleqadd 8586 0p1e1 8992 iap0 9101 num0h 9354 nummul1c 9391 decrmac 9400 decmul1 9406 fz0tp 10078 fz0to4untppr 10080 fzo0to3tp 10175 rei 10863 imi 10864 resqrexlemover 10974 ef01bndlem 11719 efhalfpi 13514 sinq34lt0t 13546 ex-fac 13763 |
Copyright terms: Public domain | W3C validator |