Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid2i | Unicode version |
Description: is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 |
Ref | Expression |
---|---|
addid2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 | |
2 | addid2 8045 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wcel 2141 (class class class)co 5850 cc 7759 cc0 7761 caddc 7764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-1cn 7854 ax-icn 7856 ax-addcl 7857 ax-mulcl 7859 ax-addcom 7861 ax-i2m1 7866 ax-0id 7869 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: ine0 8300 inelr 8490 muleqadd 8573 0p1e1 8979 iap0 9088 num0h 9341 nummul1c 9378 decrmac 9387 decmul1 9393 fz0tp 10065 fz0to4untppr 10067 fzo0to3tp 10162 rei 10850 imi 10851 resqrexlemover 10961 ef01bndlem 11706 efhalfpi 13435 sinq34lt0t 13467 ex-fac 13684 |
Copyright terms: Public domain | W3C validator |