ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid2i Unicode version

Theorem addid2i 8164
Description:  0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1  |-  A  e.  CC
Assertion
Ref Expression
addid2i  |-  ( 0  +  A )  =  A

Proof of Theorem addid2i
StepHypRef Expression
1 mul.1 . 2  |-  A  e.  CC
2 addlid 8160 . 2  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )
31, 2ax-mp 5 1  |-  ( 0  +  A )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164  (class class class)co 5919   CCcc 7872   0cc0 7874    + caddc 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-mulcl 7972  ax-addcom 7974  ax-i2m1 7979  ax-0id 7982
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189
This theorem is referenced by:  ine0  8415  inelr  8605  muleqadd  8689  0p1e1  9098  iap0  9208  num0h  9462  nummul1c  9499  decrmac  9508  decmul1  9514  fz0tp  10191  fz0to4untppr  10193  fzo0to3tp  10289  rei  11046  imi  11047  resqrexlemover  11157  ef01bndlem  11902  efhalfpi  14975  sinq34lt0t  15007  ex-fac  15290
  Copyright terms: Public domain W3C validator