| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomli | Unicode version | ||
| Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| mul.1 |
|
| mul.2 |
|
| addcomli.2 |
|
| Ref | Expression |
|---|---|
| addcomli |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.2 |
. . 3
| |
| 2 | mul.1 |
. . 3
| |
| 3 | 1, 2 | addcomi 8236 |
. 2
|
| 4 | addcomli.2 |
. 2
| |
| 5 | 3, 4 | eqtri 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 ax-addcom 8045 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: negsubdi2i 8378 1p2e3 9191 peano2z 9428 4t4e16 9622 6t3e18 9628 6t5e30 9630 7t3e21 9633 7t4e28 9634 7t6e42 9636 7t7e49 9637 8t3e24 9639 8t4e32 9640 8t5e40 9641 8t8e64 9644 9t3e27 9646 9t4e36 9647 9t5e45 9648 9t6e54 9649 9t7e63 9650 9t8e72 9651 9t9e81 9652 4bc3eq4 10940 n2dvdsm1 12299 bitsfzo 12341 6gcd4e2 12391 gcdi 12818 2exp8 12833 2exp16 12835 eulerid 15349 cosq23lt0 15380 binom4 15526 lgsdir2lem1 15580 m1lgs 15637 2lgsoddprmlem3d 15662 ex-exp 15802 ex-bc 15804 ex-gcd 15806 |
| Copyright terms: Public domain | W3C validator |