| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > addcomli | Unicode version | ||
| Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| mul.1 | 
 | 
| mul.2 | 
 | 
| addcomli.2 | 
 | 
| Ref | Expression | 
|---|---|
| addcomli | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mul.2 | 
. . 3
 | |
| 2 | mul.1 | 
. . 3
 | |
| 3 | 1, 2 | addcomi 8170 | 
. 2
 | 
| 4 | addcomli.2 | 
. 2
 | |
| 5 | 3, 4 | eqtri 2217 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 ax-addcom 7979 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: negsubdi2i 8312 1p2e3 9125 peano2z 9362 4t4e16 9555 6t3e18 9561 6t5e30 9563 7t3e21 9566 7t4e28 9567 7t6e42 9569 7t7e49 9570 8t3e24 9572 8t4e32 9573 8t5e40 9574 8t8e64 9577 9t3e27 9579 9t4e36 9580 9t5e45 9581 9t6e54 9582 9t7e63 9583 9t8e72 9584 9t9e81 9585 4bc3eq4 10865 n2dvdsm1 12078 bitsfzo 12119 6gcd4e2 12162 gcdi 12589 2exp8 12604 2exp16 12606 eulerid 15038 cosq23lt0 15069 binom4 15215 lgsdir2lem1 15269 m1lgs 15326 2lgsoddprmlem3d 15351 ex-exp 15373 ex-bc 15375 ex-gcd 15377 | 
| Copyright terms: Public domain | W3C validator |