| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomli | Unicode version | ||
| Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| mul.1 |
|
| mul.2 |
|
| addcomli.2 |
|
| Ref | Expression |
|---|---|
| addcomli |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.2 |
. . 3
| |
| 2 | mul.1 |
. . 3
| |
| 3 | 1, 2 | addcomi 8173 |
. 2
|
| 4 | addcomli.2 |
. 2
| |
| 5 | 3, 4 | eqtri 2217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 ax-addcom 7982 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: negsubdi2i 8315 1p2e3 9128 peano2z 9365 4t4e16 9558 6t3e18 9564 6t5e30 9566 7t3e21 9569 7t4e28 9570 7t6e42 9572 7t7e49 9573 8t3e24 9575 8t4e32 9576 8t5e40 9577 8t8e64 9580 9t3e27 9582 9t4e36 9583 9t5e45 9584 9t6e54 9585 9t7e63 9586 9t8e72 9587 9t9e81 9588 4bc3eq4 10868 n2dvdsm1 12081 bitsfzo 12123 6gcd4e2 12173 gcdi 12600 2exp8 12615 2exp16 12617 eulerid 15064 cosq23lt0 15095 binom4 15241 lgsdir2lem1 15295 m1lgs 15352 2lgsoddprmlem3d 15377 ex-exp 15399 ex-bc 15401 ex-gcd 15403 |
| Copyright terms: Public domain | W3C validator |