Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcomli | Unicode version |
Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
mul.1 | |
mul.2 | |
addcomli.2 |
Ref | Expression |
---|---|
addcomli |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.2 | . . 3 | |
2 | mul.1 | . . 3 | |
3 | 1, 2 | addcomi 8013 | . 2 |
4 | addcomli.2 | . 2 | |
5 | 3, 4 | eqtri 2178 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 wcel 2128 (class class class)co 5821 cc 7724 caddc 7729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-4 1490 ax-17 1506 ax-ext 2139 ax-addcom 7826 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 |
This theorem is referenced by: negsubdi2i 8155 1p2e3 8961 peano2z 9197 4t4e16 9387 6t3e18 9393 6t5e30 9395 7t3e21 9398 7t4e28 9399 7t6e42 9401 7t7e49 9402 8t3e24 9404 8t4e32 9405 8t5e40 9406 8t8e64 9409 9t3e27 9411 9t4e36 9412 9t5e45 9413 9t6e54 9414 9t7e63 9415 9t8e72 9416 9t9e81 9417 4bc3eq4 10640 n2dvdsm1 11796 6gcd4e2 11870 eulerid 13094 cosq23lt0 13125 binom4 13267 ex-exp 13274 ex-bc 13276 ex-gcd 13278 |
Copyright terms: Public domain | W3C validator |