| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomli | Unicode version | ||
| Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| mul.1 |
|
| mul.2 |
|
| addcomli.2 |
|
| Ref | Expression |
|---|---|
| addcomli |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.2 |
. . 3
| |
| 2 | mul.1 |
. . 3
| |
| 3 | 1, 2 | addcomi 8286 |
. 2
|
| 4 | addcomli.2 |
. 2
| |
| 5 | 3, 4 | eqtri 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 ax-addcom 8095 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: negsubdi2i 8428 1p2e3 9241 peano2z 9478 4t4e16 9672 6t3e18 9678 6t5e30 9680 7t3e21 9683 7t4e28 9684 7t6e42 9686 7t7e49 9687 8t3e24 9689 8t4e32 9690 8t5e40 9691 8t8e64 9694 9t3e27 9696 9t4e36 9697 9t5e45 9698 9t6e54 9699 9t7e63 9700 9t8e72 9701 9t9e81 9702 4bc3eq4 10990 n2dvdsm1 12419 bitsfzo 12461 6gcd4e2 12511 gcdi 12938 2exp8 12953 2exp16 12955 eulerid 15470 cosq23lt0 15501 binom4 15647 lgsdir2lem1 15701 m1lgs 15758 2lgsoddprmlem3d 15783 ex-exp 16049 ex-bc 16051 ex-gcd 16053 |
| Copyright terms: Public domain | W3C validator |