| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomli | Unicode version | ||
| Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| mul.1 |
|
| mul.2 |
|
| addcomli.2 |
|
| Ref | Expression |
|---|---|
| addcomli |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.2 |
. . 3
| |
| 2 | mul.1 |
. . 3
| |
| 3 | 1, 2 | addcomi 8187 |
. 2
|
| 4 | addcomli.2 |
. 2
| |
| 5 | 3, 4 | eqtri 2217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 ax-addcom 7996 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: negsubdi2i 8329 1p2e3 9142 peano2z 9379 4t4e16 9572 6t3e18 9578 6t5e30 9580 7t3e21 9583 7t4e28 9584 7t6e42 9586 7t7e49 9587 8t3e24 9589 8t4e32 9590 8t5e40 9591 8t8e64 9594 9t3e27 9596 9t4e36 9597 9t5e45 9598 9t6e54 9599 9t7e63 9600 9t8e72 9601 9t9e81 9602 4bc3eq4 10882 n2dvdsm1 12095 bitsfzo 12137 6gcd4e2 12187 gcdi 12614 2exp8 12629 2exp16 12631 eulerid 15122 cosq23lt0 15153 binom4 15299 lgsdir2lem1 15353 m1lgs 15410 2lgsoddprmlem3d 15435 ex-exp 15457 ex-bc 15459 ex-gcd 15461 |
| Copyright terms: Public domain | W3C validator |