ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpow3 GIF version

Theorem axpow3 4195
Description: A variant of the Axiom of Power Sets ax-pow 4192. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axpow3 𝑦𝑧(𝑧𝑥𝑧𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axpow3
StepHypRef Expression
1 axpow2 4194 . . 3 𝑦𝑧(𝑧𝑥𝑧𝑦)
21bm1.3ii 4139 . 2 𝑦𝑧(𝑧𝑦𝑧𝑥)
3 bicom 140 . . . 4 ((𝑧𝑥𝑧𝑦) ↔ (𝑧𝑦𝑧𝑥))
43albii 1481 . . 3 (∀𝑧(𝑧𝑥𝑧𝑦) ↔ ∀𝑧(𝑧𝑦𝑧𝑥))
54exbii 1616 . 2 (∃𝑦𝑧(𝑧𝑥𝑧𝑦) ↔ ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
62, 5mpbir 146 1 𝑦𝑧(𝑧𝑥𝑧𝑦)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1362  wex 1503  wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator