ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpow3 GIF version

Theorem axpow3 4240
Description: A variant of the Axiom of Power Sets ax-pow 4237. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axpow3 𝑦𝑧(𝑧𝑥𝑧𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axpow3
StepHypRef Expression
1 axpow2 4239 . . 3 𝑦𝑧(𝑧𝑥𝑧𝑦)
21bm1.3ii 4184 . 2 𝑦𝑧(𝑧𝑦𝑧𝑥)
3 bicom 140 . . . 4 ((𝑧𝑥𝑧𝑦) ↔ (𝑧𝑦𝑧𝑥))
43albii 1496 . . 3 (∀𝑧(𝑧𝑥𝑧𝑦) ↔ ∀𝑧(𝑧𝑦𝑧𝑥))
54exbii 1631 . 2 (∃𝑦𝑧(𝑧𝑥𝑧𝑦) ↔ ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
62, 5mpbir 146 1 𝑦𝑧(𝑧𝑥𝑧𝑦)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1373  wex 1518  wss 3177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-11 1532  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-in 3183  df-ss 3190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator