Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axpow3 | GIF version |
Description: A variant of the Axiom of Power Sets ax-pow 4160. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
axpow3 | ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axpow2 4162 | . . 3 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | |
2 | 1 | bm1.3ii 4110 | . 2 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) |
3 | bicom 139 | . . . 4 ⊢ ((𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) ↔ (𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) | |
4 | 3 | albii 1463 | . . 3 ⊢ (∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
5 | 4 | exbii 1598 | . 2 ⊢ (∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
6 | 2, 5 | mpbir 145 | 1 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1346 ∃wex 1485 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |