ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpow2 Unicode version

Theorem axpow2 4155
Description: A variant of the Axiom of Power Sets ax-pow 4153 using subset notation. Problem in {BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axpow2  |-  E. y A. z ( z  C_  x  ->  z  e.  y )
Distinct variable group:    x, y, z

Proof of Theorem axpow2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ax-pow 4153 . 2  |-  E. y A. z ( A. w
( w  e.  z  ->  w  e.  x
)  ->  z  e.  y )
2 dfss2 3131 . . . . 5  |-  ( z 
C_  x  <->  A. w
( w  e.  z  ->  w  e.  x
) )
32imbi1i 237 . . . 4  |-  ( ( z  C_  x  ->  z  e.  y )  <->  ( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y ) )
43albii 1458 . . 3  |-  ( A. z ( z  C_  x  ->  z  e.  y )  <->  A. z ( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y ) )
54exbii 1593 . 2  |-  ( E. y A. z ( z  C_  x  ->  z  e.  y )  <->  E. y A. z ( A. w
( w  e.  z  ->  w  e.  x
)  ->  z  e.  y ) )
61, 5mpbir 145 1  |-  E. y A. z ( z  C_  x  ->  z  e.  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   E.wex 1480    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  axpow3  4156  vpwex  4158
  Copyright terms: Public domain W3C validator