ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexuz3 Unicode version

Theorem rexuz3 10794
Description: Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
rexuz3  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
Distinct variable groups:    j, M    ph, j    j, k, Z
Allowed substitution hints:    ph( k)    M( k)

Proof of Theorem rexuz3
StepHypRef Expression
1 id 19 . . . . 5  |-  ( k  e.  Z  ->  k  e.  Z )
21rgen 2488 . . . 4  |-  A. k  e.  Z  k  e.  Z
3 fveq2 5429 . . . . . . 7  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  M )
)
4 rexuz3.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
53, 4eqtr4di 2191 . . . . . 6  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  Z )
65raleqdv 2635 . . . . 5  |-  ( j  =  M  ->  ( A. k  e.  ( ZZ>=
`  j ) k  e.  Z  <->  A. k  e.  Z  k  e.  Z ) )
76rspcev 2793 . . . 4  |-  ( ( M  e.  ZZ  /\  A. k  e.  Z  k  e.  Z )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) k  e.  Z )
82, 7mpan2 422 . . 3  |-  ( M  e.  ZZ  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
k  e.  Z )
98biantrurd 303 . 2  |-  ( M  e.  ZZ  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
k  e.  Z  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
104uztrn2 9367 . . . . . . . . . 10  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
1110a1d 22 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ph  ->  k  e.  Z ) )
1211ancrd 324 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ph  ->  ( k  e.  Z  /\  ph ) ) )
1312ralimdva 2502 . . . . . . 7  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ph  ->  A. k  e.  (
ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) )
14 eluzelz 9359 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
1514, 4eleq2s 2235 . . . . . . 7  |-  ( j  e.  Z  ->  j  e.  ZZ )
1613, 15jctild 314 . . . . . 6  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ph  ->  ( j  e.  ZZ  /\ 
A. k  e.  (
ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) ) )
1716imp 123 . . . . 5  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( j  e.  ZZ  /\ 
A. k  e.  (
ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) )
18 uzid 9364 . . . . . . 7  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
19 simpl 108 . . . . . . . 8  |-  ( ( k  e.  Z  /\  ph )  ->  k  e.  Z )
2019ralimi 2498 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph )  ->  A. k  e.  (
ZZ>= `  j ) k  e.  Z )
21 eleq1 2203 . . . . . . . 8  |-  ( k  =  j  ->  (
k  e.  Z  <->  j  e.  Z ) )
2221rspcva 2791 . . . . . . 7  |-  ( ( j  e.  ( ZZ>= `  j )  /\  A. k  e.  ( ZZ>= `  j ) k  e.  Z )  ->  j  e.  Z )
2318, 20, 22syl2an 287 . . . . . 6  |-  ( ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) )  ->  j  e.  Z )
24 simpr 109 . . . . . . . 8  |-  ( ( k  e.  Z  /\  ph )  ->  ph )
2524ralimi 2498 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph )  ->  A. k  e.  (
ZZ>= `  j ) ph )
2625adantl 275 . . . . . 6  |-  ( ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) )  ->  A. k  e.  ( ZZ>= `  j ) ph )
2723, 26jca 304 . . . . 5  |-  ( ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) )  ->  (
j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )
)
2817, 27impbii 125 . . . 4  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) )
2928rexbii2 2449 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  Z  /\  ph ) )
30 rexanuz 10792 . . 3  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) 
<->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
k  e.  Z  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
3129, 30bitr2i 184 . 2  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) k  e.  Z  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph )
329, 31syl6rbb 196 1  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   ` cfv 5131   ZZcz 9078   ZZ>=cuz 9350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351
This theorem is referenced by:  rexanuz2  10795  cau4  10920  clim2  11084  lmbr2  12422  lmff  12457
  Copyright terms: Public domain W3C validator