Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexuz3 | Unicode version |
Description: Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.) |
Ref | Expression |
---|---|
rexuz3.1 |
Ref | Expression |
---|---|
rexuz3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . 5 | |
2 | 1 | rgen 2523 | . . . 4 |
3 | fveq2 5496 | . . . . . . 7 | |
4 | rexuz3.1 | . . . . . . 7 | |
5 | 3, 4 | eqtr4di 2221 | . . . . . 6 |
6 | 5 | raleqdv 2671 | . . . . 5 |
7 | 6 | rspcev 2834 | . . . 4 |
8 | 2, 7 | mpan2 423 | . . 3 |
9 | 8 | biantrurd 303 | . 2 |
10 | 4 | uztrn2 9504 | . . . . . . . . . 10 |
11 | 10 | a1d 22 | . . . . . . . . 9 |
12 | 11 | ancrd 324 | . . . . . . . 8 |
13 | 12 | ralimdva 2537 | . . . . . . 7 |
14 | eluzelz 9496 | . . . . . . . 8 | |
15 | 14, 4 | eleq2s 2265 | . . . . . . 7 |
16 | 13, 15 | jctild 314 | . . . . . 6 |
17 | 16 | imp 123 | . . . . 5 |
18 | uzid 9501 | . . . . . . 7 | |
19 | simpl 108 | . . . . . . . 8 | |
20 | 19 | ralimi 2533 | . . . . . . 7 |
21 | eleq1 2233 | . . . . . . . 8 | |
22 | 21 | rspcva 2832 | . . . . . . 7 |
23 | 18, 20, 22 | syl2an 287 | . . . . . 6 |
24 | simpr 109 | . . . . . . . 8 | |
25 | 24 | ralimi 2533 | . . . . . . 7 |
26 | 25 | adantl 275 | . . . . . 6 |
27 | 23, 26 | jca 304 | . . . . 5 |
28 | 17, 27 | impbii 125 | . . . 4 |
29 | 28 | rexbii2 2481 | . . 3 |
30 | rexanuz 10952 | . . 3 | |
31 | 29, 30 | bitr2i 184 | . 2 |
32 | 9, 31 | bitr2di 196 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 cfv 5198 cz 9212 cuz 9487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 |
This theorem is referenced by: rexanuz2 10955 cau4 11080 clim2 11246 lmbr2 13008 lmff 13043 |
Copyright terms: Public domain | W3C validator |