Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexuz3 | Unicode version |
Description: Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.) |
Ref | Expression |
---|---|
rexuz3.1 |
Ref | Expression |
---|---|
rexuz3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . 5 | |
2 | 1 | rgen 2528 | . . . 4 |
3 | fveq2 5507 | . . . . . . 7 | |
4 | rexuz3.1 | . . . . . . 7 | |
5 | 3, 4 | eqtr4di 2226 | . . . . . 6 |
6 | 5 | raleqdv 2676 | . . . . 5 |
7 | 6 | rspcev 2839 | . . . 4 |
8 | 2, 7 | mpan2 425 | . . 3 |
9 | 8 | biantrurd 305 | . 2 |
10 | 4 | uztrn2 9518 | . . . . . . . . . 10 |
11 | 10 | a1d 22 | . . . . . . . . 9 |
12 | 11 | ancrd 326 | . . . . . . . 8 |
13 | 12 | ralimdva 2542 | . . . . . . 7 |
14 | eluzelz 9510 | . . . . . . . 8 | |
15 | 14, 4 | eleq2s 2270 | . . . . . . 7 |
16 | 13, 15 | jctild 316 | . . . . . 6 |
17 | 16 | imp 124 | . . . . 5 |
18 | uzid 9515 | . . . . . . 7 | |
19 | simpl 109 | . . . . . . . 8 | |
20 | 19 | ralimi 2538 | . . . . . . 7 |
21 | eleq1 2238 | . . . . . . . 8 | |
22 | 21 | rspcva 2837 | . . . . . . 7 |
23 | 18, 20, 22 | syl2an 289 | . . . . . 6 |
24 | simpr 110 | . . . . . . . 8 | |
25 | 24 | ralimi 2538 | . . . . . . 7 |
26 | 25 | adantl 277 | . . . . . 6 |
27 | 23, 26 | jca 306 | . . . . 5 |
28 | 17, 27 | impbii 126 | . . . 4 |
29 | 28 | rexbii2 2486 | . . 3 |
30 | rexanuz 10965 | . . 3 | |
31 | 29, 30 | bitr2i 185 | . 2 |
32 | 9, 31 | bitr2di 197 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wral 2453 wrex 2454 cfv 5208 cz 9226 cuz 9501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8893 df-n0 9150 df-z 9227 df-uz 9502 |
This theorem is referenced by: rexanuz2 10968 cau4 11093 clim2 11259 lmbr2 13285 lmff 13320 |
Copyright terms: Public domain | W3C validator |