ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexuz3 Unicode version

Theorem rexuz3 10932
Description: Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
rexuz3  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
Distinct variable groups:    j, M    ph, j    j, k, Z
Allowed substitution hints:    ph( k)    M( k)

Proof of Theorem rexuz3
StepHypRef Expression
1 id 19 . . . . 5  |-  ( k  e.  Z  ->  k  e.  Z )
21rgen 2519 . . . 4  |-  A. k  e.  Z  k  e.  Z
3 fveq2 5486 . . . . . . 7  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  M )
)
4 rexuz3.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
53, 4eqtr4di 2217 . . . . . 6  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  Z )
65raleqdv 2667 . . . . 5  |-  ( j  =  M  ->  ( A. k  e.  ( ZZ>=
`  j ) k  e.  Z  <->  A. k  e.  Z  k  e.  Z ) )
76rspcev 2830 . . . 4  |-  ( ( M  e.  ZZ  /\  A. k  e.  Z  k  e.  Z )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) k  e.  Z )
82, 7mpan2 422 . . 3  |-  ( M  e.  ZZ  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
k  e.  Z )
98biantrurd 303 . 2  |-  ( M  e.  ZZ  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
k  e.  Z  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
104uztrn2 9483 . . . . . . . . . 10  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
1110a1d 22 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ph  ->  k  e.  Z ) )
1211ancrd 324 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ph  ->  ( k  e.  Z  /\  ph ) ) )
1312ralimdva 2533 . . . . . . 7  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ph  ->  A. k  e.  (
ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) )
14 eluzelz 9475 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
1514, 4eleq2s 2261 . . . . . . 7  |-  ( j  e.  Z  ->  j  e.  ZZ )
1613, 15jctild 314 . . . . . 6  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ph  ->  ( j  e.  ZZ  /\ 
A. k  e.  (
ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) ) )
1716imp 123 . . . . 5  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( j  e.  ZZ  /\ 
A. k  e.  (
ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) )
18 uzid 9480 . . . . . . 7  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
19 simpl 108 . . . . . . . 8  |-  ( ( k  e.  Z  /\  ph )  ->  k  e.  Z )
2019ralimi 2529 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph )  ->  A. k  e.  (
ZZ>= `  j ) k  e.  Z )
21 eleq1 2229 . . . . . . . 8  |-  ( k  =  j  ->  (
k  e.  Z  <->  j  e.  Z ) )
2221rspcva 2828 . . . . . . 7  |-  ( ( j  e.  ( ZZ>= `  j )  /\  A. k  e.  ( ZZ>= `  j ) k  e.  Z )  ->  j  e.  Z )
2318, 20, 22syl2an 287 . . . . . 6  |-  ( ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) )  ->  j  e.  Z )
24 simpr 109 . . . . . . . 8  |-  ( ( k  e.  Z  /\  ph )  ->  ph )
2524ralimi 2529 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph )  ->  A. k  e.  (
ZZ>= `  j ) ph )
2625adantl 275 . . . . . 6  |-  ( ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) )  ->  A. k  e.  ( ZZ>= `  j ) ph )
2723, 26jca 304 . . . . 5  |-  ( ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) )  ->  (
j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )
)
2817, 27impbii 125 . . . 4  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) )
2928rexbii2 2477 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  Z  /\  ph ) )
30 rexanuz 10930 . . 3  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) 
<->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
k  e.  Z  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
3129, 30bitr2i 184 . 2  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) k  e.  Z  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph )
329, 31bitr2di 196 1  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   ` cfv 5188   ZZcz 9191   ZZ>=cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467
This theorem is referenced by:  rexanuz2  10933  cau4  11058  clim2  11224  lmbr2  12854  lmff  12889
  Copyright terms: Public domain W3C validator