ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexuz3 Unicode version

Theorem rexuz3 11134
Description: Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
rexuz3  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
Distinct variable groups:    j, M    ph, j    j, k, Z
Allowed substitution hints:    ph( k)    M( k)

Proof of Theorem rexuz3
StepHypRef Expression
1 id 19 . . . . 5  |-  ( k  e.  Z  ->  k  e.  Z )
21rgen 2547 . . . 4  |-  A. k  e.  Z  k  e.  Z
3 fveq2 5554 . . . . . . 7  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  M )
)
4 rexuz3.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
53, 4eqtr4di 2244 . . . . . 6  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  Z )
65raleqdv 2696 . . . . 5  |-  ( j  =  M  ->  ( A. k  e.  ( ZZ>=
`  j ) k  e.  Z  <->  A. k  e.  Z  k  e.  Z ) )
76rspcev 2864 . . . 4  |-  ( ( M  e.  ZZ  /\  A. k  e.  Z  k  e.  Z )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) k  e.  Z )
82, 7mpan2 425 . . 3  |-  ( M  e.  ZZ  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
k  e.  Z )
98biantrurd 305 . 2  |-  ( M  e.  ZZ  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
k  e.  Z  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
104uztrn2 9610 . . . . . . . . . 10  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
1110a1d 22 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ph  ->  k  e.  Z ) )
1211ancrd 326 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ph  ->  ( k  e.  Z  /\  ph ) ) )
1312ralimdva 2561 . . . . . . 7  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ph  ->  A. k  e.  (
ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) )
14 eluzelz 9601 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
1514, 4eleq2s 2288 . . . . . . 7  |-  ( j  e.  Z  ->  j  e.  ZZ )
1613, 15jctild 316 . . . . . 6  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ph  ->  ( j  e.  ZZ  /\ 
A. k  e.  (
ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) ) )
1716imp 124 . . . . 5  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( j  e.  ZZ  /\ 
A. k  e.  (
ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) )
18 uzid 9606 . . . . . . 7  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
19 simpl 109 . . . . . . . 8  |-  ( ( k  e.  Z  /\  ph )  ->  k  e.  Z )
2019ralimi 2557 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph )  ->  A. k  e.  (
ZZ>= `  j ) k  e.  Z )
21 eleq1 2256 . . . . . . . 8  |-  ( k  =  j  ->  (
k  e.  Z  <->  j  e.  Z ) )
2221rspcva 2862 . . . . . . 7  |-  ( ( j  e.  ( ZZ>= `  j )  /\  A. k  e.  ( ZZ>= `  j ) k  e.  Z )  ->  j  e.  Z )
2318, 20, 22syl2an 289 . . . . . 6  |-  ( ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) )  ->  j  e.  Z )
24 simpr 110 . . . . . . . 8  |-  ( ( k  e.  Z  /\  ph )  ->  ph )
2524ralimi 2557 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph )  ->  A. k  e.  (
ZZ>= `  j ) ph )
2625adantl 277 . . . . . 6  |-  ( ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) )  ->  A. k  e.  ( ZZ>= `  j ) ph )
2723, 26jca 306 . . . . 5  |-  ( ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) )  ->  (
j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )
)
2817, 27impbii 126 . . . 4  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( j  e.  ZZ  /\  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) ) )
2928rexbii2 2505 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  Z  /\  ph ) )
30 rexanuz 11132 . . 3  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  Z  /\  ph ) 
<->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
k  e.  Z  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
3129, 30bitr2i 185 . 2  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) k  e.  Z  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph )
329, 31bitr2di 197 1  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   ` cfv 5254   ZZcz 9317   ZZ>=cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  rexanuz2  11135  cau4  11260  clim2  11426  lmbr2  14382  lmff  14417
  Copyright terms: Public domain W3C validator