Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexuz3 | Unicode version |
Description: Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.) |
Ref | Expression |
---|---|
rexuz3.1 |
Ref | Expression |
---|---|
rexuz3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . 5 | |
2 | 1 | rgen 2519 | . . . 4 |
3 | fveq2 5486 | . . . . . . 7 | |
4 | rexuz3.1 | . . . . . . 7 | |
5 | 3, 4 | eqtr4di 2217 | . . . . . 6 |
6 | 5 | raleqdv 2667 | . . . . 5 |
7 | 6 | rspcev 2830 | . . . 4 |
8 | 2, 7 | mpan2 422 | . . 3 |
9 | 8 | biantrurd 303 | . 2 |
10 | 4 | uztrn2 9483 | . . . . . . . . . 10 |
11 | 10 | a1d 22 | . . . . . . . . 9 |
12 | 11 | ancrd 324 | . . . . . . . 8 |
13 | 12 | ralimdva 2533 | . . . . . . 7 |
14 | eluzelz 9475 | . . . . . . . 8 | |
15 | 14, 4 | eleq2s 2261 | . . . . . . 7 |
16 | 13, 15 | jctild 314 | . . . . . 6 |
17 | 16 | imp 123 | . . . . 5 |
18 | uzid 9480 | . . . . . . 7 | |
19 | simpl 108 | . . . . . . . 8 | |
20 | 19 | ralimi 2529 | . . . . . . 7 |
21 | eleq1 2229 | . . . . . . . 8 | |
22 | 21 | rspcva 2828 | . . . . . . 7 |
23 | 18, 20, 22 | syl2an 287 | . . . . . 6 |
24 | simpr 109 | . . . . . . . 8 | |
25 | 24 | ralimi 2529 | . . . . . . 7 |
26 | 25 | adantl 275 | . . . . . 6 |
27 | 23, 26 | jca 304 | . . . . 5 |
28 | 17, 27 | impbii 125 | . . . 4 |
29 | 28 | rexbii2 2477 | . . 3 |
30 | rexanuz 10930 | . . 3 | |
31 | 29, 30 | bitr2i 184 | . 2 |
32 | 9, 31 | bitr2di 196 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wrex 2445 cfv 5188 cz 9191 cuz 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 |
This theorem is referenced by: rexanuz2 10933 cau4 11058 clim2 11224 lmbr2 12854 lmff 12889 |
Copyright terms: Public domain | W3C validator |