ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1od2 Unicode version

Theorem f1od2 6132
Description: Describe an implicit one-to-one onto function of two variables. (Contributed by Thierry Arnoux, 17-Aug-2017.)
Hypotheses
Ref Expression
f1od2.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
f1od2.2  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  C  e.  W )
f1od2.3  |-  ( (
ph  /\  z  e.  D )  ->  (
I  e.  X  /\  J  e.  Y )
)
f1od2.4  |-  ( ph  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( z  e.  D  /\  (
x  =  I  /\  y  =  J )
) ) )
Assertion
Ref Expression
f1od2  |-  ( ph  ->  F : ( A  X.  B ) -1-1-onto-> D )
Distinct variable groups:    x, y, z, A    x, B, y, z    z, C    x, D, y, z    x, I, y    x, J, y    ph, x, y, z
Allowed substitution hints:    C( x, y)    F( x, y, z)    I(
z)    J( z)    W( x, y, z)    X( x, y, z)    Y( x, y, z)

Proof of Theorem f1od2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 f1od2.2 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  C  e.  W )
21ralrimivva 2514 . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  C  e.  W )
3 f1od2.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
43fnmpo 6100 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  W  ->  F  Fn  ( A  X.  B
) )
52, 4syl 14 . 2  |-  ( ph  ->  F  Fn  ( A  X.  B ) )
6 f1od2.3 . . . . . 6  |-  ( (
ph  /\  z  e.  D )  ->  (
I  e.  X  /\  J  e.  Y )
)
7 opelxpi 4571 . . . . . 6  |-  ( ( I  e.  X  /\  J  e.  Y )  -> 
<. I ,  J >.  e.  ( X  X.  Y
) )
86, 7syl 14 . . . . 5  |-  ( (
ph  /\  z  e.  D )  ->  <. I ,  J >.  e.  ( X  X.  Y ) )
98ralrimiva 2505 . . . 4  |-  ( ph  ->  A. z  e.  D  <. I ,  J >.  e.  ( X  X.  Y
) )
10 eqid 2139 . . . . 5  |-  ( z  e.  D  |->  <. I ,  J >. )  =  ( z  e.  D  |->  <.
I ,  J >. )
1110fnmpt 5249 . . . 4  |-  ( A. z  e.  D  <. I ,  J >.  e.  ( X  X.  Y )  ->  ( z  e.  D  |->  <. I ,  J >. )  Fn  D )
129, 11syl 14 . . 3  |-  ( ph  ->  ( z  e.  D  |-> 
<. I ,  J >. )  Fn  D )
13 elxp7 6068 . . . . . . . 8  |-  ( a  e.  ( A  X.  B )  <->  ( a  e.  ( _V  X.  _V )  /\  ( ( 1st `  a )  e.  A  /\  ( 2nd `  a
)  e.  B ) ) )
1413anbi1i 453 . . . . . . 7  |-  ( ( a  e.  ( A  X.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C )  <->  ( (
a  e.  ( _V 
X.  _V )  /\  (
( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B ) )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C ) )
15 anass 398 . . . . . . . . 9  |-  ( ( ( a  e.  ( _V  X.  _V )  /\  ( ( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B ) )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C )  <->  ( a  e.  ( _V  X.  _V )  /\  ( ( ( 1st `  a )  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) ) )
16 f1od2.4 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( z  e.  D  /\  (
x  =  I  /\  y  =  J )
) ) )
1716sbcbidv 2967 . . . . . . . . . . . 12  |-  ( ph  ->  ( [. ( 2nd `  a )  /  y ]. ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  [. ( 2nd `  a )  /  y ]. ( z  e.  D  /\  ( x  =  I  /\  y  =  J ) ) ) )
1817sbcbidv 2967 . . . . . . . . . . 11  |-  ( ph  ->  ( [. ( 1st `  a )  /  x ]. [. ( 2nd `  a
)  /  y ]. ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  [. ( 1st `  a )  /  x ]. [. ( 2nd `  a
)  /  y ]. ( z  e.  D  /\  ( x  =  I  /\  y  =  J ) ) ) )
19 sbcan 2951 . . . . . . . . . . . . . 14  |-  ( [. ( 2nd `  a )  /  y ]. (
( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  <->  ( [. ( 2nd `  a )  /  y ]. (
x  e.  A  /\  y  e.  B )  /\  [. ( 2nd `  a
)  /  y ]. z  =  C )
)
20 sbcan 2951 . . . . . . . . . . . . . . . 16  |-  ( [. ( 2nd `  a )  /  y ]. (
x  e.  A  /\  y  e.  B )  <->  (
[. ( 2nd `  a
)  /  y ]. x  e.  A  /\  [. ( 2nd `  a
)  /  y ]. y  e.  B )
)
21 vex 2689 . . . . . . . . . . . . . . . . . . 19  |-  a  e. 
_V
22 2ndexg 6066 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  _V  ->  ( 2nd `  a )  e. 
_V )
2321, 22ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( 2nd `  a )  e.  _V
24 sbcg 2978 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  a )  e.  _V  ->  ( [. ( 2nd `  a
)  /  y ]. x  e.  A  <->  x  e.  A ) )
2523, 24ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( [. ( 2nd `  a )  /  y ]. x  e.  A  <->  x  e.  A
)
26 sbcel1v 2971 . . . . . . . . . . . . . . . . 17  |-  ( [. ( 2nd `  a )  /  y ]. y  e.  B  <->  ( 2nd `  a
)  e.  B )
2725, 26anbi12i 455 . . . . . . . . . . . . . . . 16  |-  ( (
[. ( 2nd `  a
)  /  y ]. x  e.  A  /\  [. ( 2nd `  a
)  /  y ]. y  e.  B )  <->  ( x  e.  A  /\  ( 2nd `  a )  e.  B ) )
2820, 27bitri 183 . . . . . . . . . . . . . . 15  |-  ( [. ( 2nd `  a )  /  y ]. (
x  e.  A  /\  y  e.  B )  <->  ( x  e.  A  /\  ( 2nd `  a )  e.  B ) )
29 sbceq2g 3024 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  a )  e.  _V  ->  ( [. ( 2nd `  a
)  /  y ]. z  =  C  <->  z  =  [_ ( 2nd `  a
)  /  y ]_ C ) )
3023, 29ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( [. ( 2nd `  a )  /  y ]. z  =  C  <->  z  =  [_ ( 2nd `  a )  /  y ]_ C
)
3128, 30anbi12i 455 . . . . . . . . . . . . . 14  |-  ( (
[. ( 2nd `  a
)  /  y ]. ( x  e.  A  /\  y  e.  B
)  /\  [. ( 2nd `  a )  /  y ]. z  =  C
)  <->  ( ( x  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 2nd `  a
)  /  y ]_ C ) )
3219, 31bitri 183 . . . . . . . . . . . . 13  |-  ( [. ( 2nd `  a )  /  y ]. (
( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  <->  ( (
x  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 2nd `  a )  /  y ]_ C ) )
3332sbcbii 2968 . . . . . . . . . . . 12  |-  ( [. ( 1st `  a )  /  x ]. [. ( 2nd `  a )  / 
y ]. ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  [. ( 1st `  a )  /  x ]. ( ( x  e.  A  /\  ( 2nd `  a )  e.  B
)  /\  z  =  [_ ( 2nd `  a
)  /  y ]_ C ) )
34 sbcan 2951 . . . . . . . . . . . 12  |-  ( [. ( 1st `  a )  /  x ]. (
( x  e.  A  /\  ( 2nd `  a
)  e.  B )  /\  z  =  [_ ( 2nd `  a )  /  y ]_ C
)  <->  ( [. ( 1st `  a )  /  x ]. ( x  e.  A  /\  ( 2nd `  a )  e.  B
)  /\  [. ( 1st `  a )  /  x ]. z  =  [_ ( 2nd `  a )  / 
y ]_ C ) )
35 sbcan 2951 . . . . . . . . . . . . . 14  |-  ( [. ( 1st `  a )  /  x ]. (
x  e.  A  /\  ( 2nd `  a )  e.  B )  <->  ( [. ( 1st `  a )  /  x ]. x  e.  A  /\  [. ( 1st `  a )  /  x ]. ( 2nd `  a
)  e.  B ) )
36 sbcel1v 2971 . . . . . . . . . . . . . . 15  |-  ( [. ( 1st `  a )  /  x ]. x  e.  A  <->  ( 1st `  a
)  e.  A )
37 1stexg 6065 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  _V  ->  ( 1st `  a )  e. 
_V )
3821, 37ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( 1st `  a )  e.  _V
39 sbcg 2978 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  a )  e.  _V  ->  ( [. ( 1st `  a
)  /  x ]. ( 2nd `  a )  e.  B  <->  ( 2nd `  a )  e.  B
) )
4038, 39ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( [. ( 1st `  a )  /  x ]. ( 2nd `  a )  e.  B  <->  ( 2nd `  a
)  e.  B )
4136, 40anbi12i 455 . . . . . . . . . . . . . 14  |-  ( (
[. ( 1st `  a
)  /  x ]. x  e.  A  /\  [. ( 1st `  a
)  /  x ]. ( 2nd `  a )  e.  B )  <->  ( ( 1st `  a )  e.  A  /\  ( 2nd `  a )  e.  B
) )
4235, 41bitri 183 . . . . . . . . . . . . 13  |-  ( [. ( 1st `  a )  /  x ]. (
x  e.  A  /\  ( 2nd `  a )  e.  B )  <->  ( ( 1st `  a )  e.  A  /\  ( 2nd `  a )  e.  B
) )
43 sbceq2g 3024 . . . . . . . . . . . . . 14  |-  ( ( 1st `  a )  e.  _V  ->  ( [. ( 1st `  a
)  /  x ]. z  =  [_ ( 2nd `  a )  /  y ]_ C  <->  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C ) )
4438, 43ax-mp 5 . . . . . . . . . . . . 13  |-  ( [. ( 1st `  a )  /  x ]. z  =  [_ ( 2nd `  a
)  /  y ]_ C 
<->  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  /  y ]_ C )
4542, 44anbi12i 455 . . . . . . . . . . . 12  |-  ( (
[. ( 1st `  a
)  /  x ]. ( x  e.  A  /\  ( 2nd `  a
)  e.  B )  /\  [. ( 1st `  a )  /  x ]. z  =  [_ ( 2nd `  a )  / 
y ]_ C )  <->  ( (
( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) )
4633, 34, 453bitri 205 . . . . . . . . . . 11  |-  ( [. ( 1st `  a )  /  x ]. [. ( 2nd `  a )  / 
y ]. ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) )
47 sbcan 2951 . . . . . . . . . . . . . 14  |-  ( [. ( 2nd `  a )  /  y ]. (
z  e.  D  /\  ( x  =  I  /\  y  =  J
) )  <->  ( [. ( 2nd `  a )  /  y ]. z  e.  D  /\  [. ( 2nd `  a )  / 
y ]. ( x  =  I  /\  y  =  J ) ) )
48 sbcg 2978 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  a )  e.  _V  ->  ( [. ( 2nd `  a
)  /  y ]. z  e.  D  <->  z  e.  D ) )
4923, 48ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( [. ( 2nd `  a )  /  y ]. z  e.  D  <->  z  e.  D
)
50 sbcan 2951 . . . . . . . . . . . . . . . 16  |-  ( [. ( 2nd `  a )  /  y ]. (
x  =  I  /\  y  =  J )  <->  (
[. ( 2nd `  a
)  /  y ]. x  =  I  /\  [. ( 2nd `  a
)  /  y ]. y  =  J )
)
51 sbcg 2978 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  a )  e.  _V  ->  ( [. ( 2nd `  a
)  /  y ]. x  =  I  <->  x  =  I ) )
5223, 51ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( [. ( 2nd `  a )  /  y ]. x  =  I  <->  x  =  I
)
53 sbceq1g 3022 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  a )  e.  _V  ->  ( [. ( 2nd `  a
)  /  y ]. y  =  J  <->  [_ ( 2nd `  a )  /  y ]_ y  =  J
) )
5423, 53ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( [. ( 2nd `  a )  /  y ]. y  =  J  <->  [_ ( 2nd `  a
)  /  y ]_ y  =  J )
55 csbvarg 3030 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2nd `  a )  e.  _V  ->  [_ ( 2nd `  a )  / 
y ]_ y  =  ( 2nd `  a ) )
5623, 55ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  [_ ( 2nd `  a )  / 
y ]_ y  =  ( 2nd `  a )
5756eqeq1i 2147 . . . . . . . . . . . . . . . . . 18  |-  ( [_ ( 2nd `  a )  /  y ]_ y  =  J  <->  ( 2nd `  a
)  =  J )
5854, 57bitri 183 . . . . . . . . . . . . . . . . 17  |-  ( [. ( 2nd `  a )  /  y ]. y  =  J  <->  ( 2nd `  a
)  =  J )
5952, 58anbi12i 455 . . . . . . . . . . . . . . . 16  |-  ( (
[. ( 2nd `  a
)  /  y ]. x  =  I  /\  [. ( 2nd `  a
)  /  y ]. y  =  J )  <->  ( x  =  I  /\  ( 2nd `  a )  =  J ) )
6050, 59bitri 183 . . . . . . . . . . . . . . 15  |-  ( [. ( 2nd `  a )  /  y ]. (
x  =  I  /\  y  =  J )  <->  ( x  =  I  /\  ( 2nd `  a )  =  J ) )
6149, 60anbi12i 455 . . . . . . . . . . . . . 14  |-  ( (
[. ( 2nd `  a
)  /  y ]. z  e.  D  /\  [. ( 2nd `  a
)  /  y ]. ( x  =  I  /\  y  =  J
) )  <->  ( z  e.  D  /\  (
x  =  I  /\  ( 2nd `  a )  =  J ) ) )
6247, 61bitri 183 . . . . . . . . . . . . 13  |-  ( [. ( 2nd `  a )  /  y ]. (
z  e.  D  /\  ( x  =  I  /\  y  =  J
) )  <->  ( z  e.  D  /\  (
x  =  I  /\  ( 2nd `  a )  =  J ) ) )
6362sbcbii 2968 . . . . . . . . . . . 12  |-  ( [. ( 1st `  a )  /  x ]. [. ( 2nd `  a )  / 
y ]. ( z  e.  D  /\  ( x  =  I  /\  y  =  J ) )  <->  [. ( 1st `  a )  /  x ]. ( z  e.  D  /\  ( x  =  I  /\  ( 2nd `  a
)  =  J ) ) )
64 sbcan 2951 . . . . . . . . . . . 12  |-  ( [. ( 1st `  a )  /  x ]. (
z  e.  D  /\  ( x  =  I  /\  ( 2nd `  a
)  =  J ) )  <->  ( [. ( 1st `  a )  /  x ]. z  e.  D  /\  [. ( 1st `  a
)  /  x ]. ( x  =  I  /\  ( 2nd `  a
)  =  J ) ) )
65 sbcg 2978 . . . . . . . . . . . . . 14  |-  ( ( 1st `  a )  e.  _V  ->  ( [. ( 1st `  a
)  /  x ]. z  e.  D  <->  z  e.  D ) )
6638, 65ax-mp 5 . . . . . . . . . . . . 13  |-  ( [. ( 1st `  a )  /  x ]. z  e.  D  <->  z  e.  D
)
67 sbcan 2951 . . . . . . . . . . . . . 14  |-  ( [. ( 1st `  a )  /  x ]. (
x  =  I  /\  ( 2nd `  a )  =  J )  <->  ( [. ( 1st `  a )  /  x ]. x  =  I  /\  [. ( 1st `  a )  /  x ]. ( 2nd `  a
)  =  J ) )
68 sbceq1g 3022 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  a )  e.  _V  ->  ( [. ( 1st `  a
)  /  x ]. x  =  I  <->  [_ ( 1st `  a )  /  x ]_ x  =  I
) )
6938, 68ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( [. ( 1st `  a )  /  x ]. x  =  I  <->  [_ ( 1st `  a
)  /  x ]_ x  =  I )
70 csbvarg 3030 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  a )  e.  _V  ->  [_ ( 1st `  a )  /  x ]_ x  =  ( 1st `  a ) )
7138, 70ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  [_ ( 1st `  a )  /  x ]_ x  =  ( 1st `  a )
7271eqeq1i 2147 . . . . . . . . . . . . . . . 16  |-  ( [_ ( 1st `  a )  /  x ]_ x  =  I  <->  ( 1st `  a
)  =  I )
7369, 72bitri 183 . . . . . . . . . . . . . . 15  |-  ( [. ( 1st `  a )  /  x ]. x  =  I  <->  ( 1st `  a
)  =  I )
74 sbcg 2978 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  a )  e.  _V  ->  ( [. ( 1st `  a
)  /  x ]. ( 2nd `  a )  =  J  <->  ( 2nd `  a )  =  J ) )
7538, 74ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( [. ( 1st `  a )  /  x ]. ( 2nd `  a )  =  J  <->  ( 2nd `  a
)  =  J )
7673, 75anbi12i 455 . . . . . . . . . . . . . 14  |-  ( (
[. ( 1st `  a
)  /  x ]. x  =  I  /\  [. ( 1st `  a
)  /  x ]. ( 2nd `  a )  =  J )  <->  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) )
7767, 76bitri 183 . . . . . . . . . . . . 13  |-  ( [. ( 1st `  a )  /  x ]. (
x  =  I  /\  ( 2nd `  a )  =  J )  <->  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) )
7866, 77anbi12i 455 . . . . . . . . . . . 12  |-  ( (
[. ( 1st `  a
)  /  x ]. z  e.  D  /\  [. ( 1st `  a
)  /  x ]. ( x  =  I  /\  ( 2nd `  a
)  =  J ) )  <->  ( z  e.  D  /\  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) ) )
7963, 64, 783bitri 205 . . . . . . . . . . 11  |-  ( [. ( 1st `  a )  /  x ]. [. ( 2nd `  a )  / 
y ]. ( z  e.  D  /\  ( x  =  I  /\  y  =  J ) )  <->  ( z  e.  D  /\  (
( 1st `  a
)  =  I  /\  ( 2nd `  a )  =  J ) ) )
8018, 46, 793bitr3g 221 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( 1st `  a )  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C )  <->  ( z  e.  D  /\  (
( 1st `  a
)  =  I  /\  ( 2nd `  a )  =  J ) ) ) )
8180anbi2d 459 . . . . . . . . 9  |-  ( ph  ->  ( ( a  e.  ( _V  X.  _V )  /\  ( ( ( 1st `  a )  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) )  <->  ( a  e.  ( _V  X.  _V )  /\  ( z  e.  D  /\  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) ) ) ) )
8215, 81syl5bb 191 . . . . . . . 8  |-  ( ph  ->  ( ( ( a  e.  ( _V  X.  _V )  /\  (
( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B ) )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C )  <->  ( a  e.  ( _V  X.  _V )  /\  ( z  e.  D  /\  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) ) ) ) )
83 xpss 4647 . . . . . . . . . . . 12  |-  ( X  X.  Y )  C_  ( _V  X.  _V )
84 simprr 521 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( z  e.  D  /\  a  =  <. I ,  J >. ) )  ->  a  =  <. I ,  J >. )
858adantrr 470 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( z  e.  D  /\  a  =  <. I ,  J >. ) )  ->  <. I ,  J >.  e.  ( X  X.  Y ) )
8684, 85eqeltrd 2216 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( z  e.  D  /\  a  =  <. I ,  J >. ) )  ->  a  e.  ( X  X.  Y
) )
8783, 86sseldi 3095 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  D  /\  a  =  <. I ,  J >. ) )  ->  a  e.  ( _V  X.  _V ) )
8887ex 114 . . . . . . . . . 10  |-  ( ph  ->  ( ( z  e.  D  /\  a  = 
<. I ,  J >. )  ->  a  e.  ( _V  X.  _V )
) )
8988pm4.71rd 391 . . . . . . . . 9  |-  ( ph  ->  ( ( z  e.  D  /\  a  = 
<. I ,  J >. )  <-> 
( a  e.  ( _V  X.  _V )  /\  ( z  e.  D  /\  a  =  <. I ,  J >. )
) ) )
90 eqop 6075 . . . . . . . . . . 11  |-  ( a  e.  ( _V  X.  _V )  ->  ( a  =  <. I ,  J >.  <-> 
( ( 1st `  a
)  =  I  /\  ( 2nd `  a )  =  J ) ) )
9190anbi2d 459 . . . . . . . . . 10  |-  ( a  e.  ( _V  X.  _V )  ->  ( ( z  e.  D  /\  a  =  <. I ,  J >. )  <->  ( z  e.  D  /\  (
( 1st `  a
)  =  I  /\  ( 2nd `  a )  =  J ) ) ) )
9291pm5.32i 449 . . . . . . . . 9  |-  ( ( a  e.  ( _V 
X.  _V )  /\  (
z  e.  D  /\  a  =  <. I ,  J >. ) )  <->  ( a  e.  ( _V  X.  _V )  /\  ( z  e.  D  /\  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) ) ) )
9389, 92syl6rbb 196 . . . . . . . 8  |-  ( ph  ->  ( ( a  e.  ( _V  X.  _V )  /\  ( z  e.  D  /\  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) ) )  <-> 
( z  e.  D  /\  a  =  <. I ,  J >. )
) )
9482, 93bitrd 187 . . . . . . 7  |-  ( ph  ->  ( ( ( a  e.  ( _V  X.  _V )  /\  (
( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B ) )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C )  <->  ( z  e.  D  /\  a  =  <. I ,  J >. ) ) )
9514, 94syl5bb 191 . . . . . 6  |-  ( ph  ->  ( ( a  e.  ( A  X.  B
)  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C )  <->  ( z  e.  D  /\  a  =  <. I ,  J >. ) ) )
9695opabbidv 3994 . . . . 5  |-  ( ph  ->  { <. z ,  a
>.  |  ( a  e.  ( A  X.  B
)  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) }  =  { <. z ,  a
>.  |  ( z  e.  D  /\  a  =  <. I ,  J >. ) } )
97 df-mpo 5779 . . . . . . . 8  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
983, 97eqtri 2160 . . . . . . 7  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
9998cnveqi 4714 . . . . . 6  |-  `' F  =  `' { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
100 nfv 1508 . . . . . . . 8  |-  F/ x  a  e.  ( A  X.  B )
101 nfcsb1v 3035 . . . . . . . . 9  |-  F/_ x [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C
102101nfeq2 2293 . . . . . . . 8  |-  F/ x  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C
103100, 102nfan 1544 . . . . . . 7  |-  F/ x
( a  e.  ( A  X.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C )
104 nfv 1508 . . . . . . . 8  |-  F/ y  a  e.  ( A  X.  B )
105 nfcv 2281 . . . . . . . . . 10  |-  F/_ y
( 1st `  a
)
106 nfcsb1v 3035 . . . . . . . . . 10  |-  F/_ y [_ ( 2nd `  a
)  /  y ]_ C
107105, 106nfcsb 3037 . . . . . . . . 9  |-  F/_ y [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C
108107nfeq2 2293 . . . . . . . 8  |-  F/ y  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  /  y ]_ C
109104, 108nfan 1544 . . . . . . 7  |-  F/ y ( a  e.  ( A  X.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C )
110 eleq1 2202 . . . . . . . . 9  |-  ( a  =  <. x ,  y
>.  ->  ( a  e.  ( A  X.  B
)  <->  <. x ,  y
>.  e.  ( A  X.  B ) ) )
111 opelxp 4569 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
112110, 111syl6bb 195 . . . . . . . 8  |-  ( a  =  <. x ,  y
>.  ->  ( a  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) ) )
113 csbopeq1a 6086 . . . . . . . . 9  |-  ( a  =  <. x ,  y
>.  ->  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C  =  C )
114113eqeq2d 2151 . . . . . . . 8  |-  ( a  =  <. x ,  y
>.  ->  ( z  = 
[_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C 
<->  z  =  C ) )
115112, 114anbi12d 464 . . . . . . 7  |-  ( a  =  <. x ,  y
>.  ->  ( ( a  e.  ( A  X.  B )  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) ) )
116 xpss 4647 . . . . . . . . 9  |-  ( A  X.  B )  C_  ( _V  X.  _V )
117116sseli 3093 . . . . . . . 8  |-  ( a  e.  ( A  X.  B )  ->  a  e.  ( _V  X.  _V ) )
118117adantr 274 . . . . . . 7  |-  ( ( a  e.  ( A  X.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C )  ->  a  e.  ( _V  X.  _V ) )
119103, 109, 115, 118cnvoprab 6131 . . . . . 6  |-  `' { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { <. z ,  a
>.  |  ( a  e.  ( A  X.  B
)  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) }
12099, 119eqtri 2160 . . . . 5  |-  `' F  =  { <. z ,  a
>.  |  ( a  e.  ( A  X.  B
)  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) }
121 df-mpt 3991 . . . . 5  |-  ( z  e.  D  |->  <. I ,  J >. )  =  { <. z ,  a >.  |  ( z  e.  D  /\  a  = 
<. I ,  J >. ) }
12296, 120, 1213eqtr4g 2197 . . . 4  |-  ( ph  ->  `' F  =  (
z  e.  D  |->  <.
I ,  J >. ) )
123122fneq1d 5213 . . 3  |-  ( ph  ->  ( `' F  Fn  D 
<->  ( z  e.  D  |-> 
<. I ,  J >. )  Fn  D ) )
12412, 123mpbird 166 . 2  |-  ( ph  ->  `' F  Fn  D
)
125 dff1o4 5375 . 2  |-  ( F : ( A  X.  B ) -1-1-onto-> D  <->  ( F  Fn  ( A  X.  B
)  /\  `' F  Fn  D ) )
1265, 124, 125sylanbrc 413 1  |-  ( ph  ->  F : ( A  X.  B ) -1-1-onto-> D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   _Vcvv 2686   [.wsbc 2909   [_csb 3003   <.cop 3530   {copab 3988    |-> cmpt 3989    X. cxp 4537   `'ccnv 4538    Fn wfn 5118   -1-1-onto->wf1o 5122   ` cfv 5123   {coprab 5775    e. cmpo 5776   1stc1st 6036   2ndc2nd 6037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039
This theorem is referenced by:  oddpwdc  11852
  Copyright terms: Public domain W3C validator