ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1od2 Unicode version

Theorem f1od2 6214
Description: Describe an implicit one-to-one onto function of two variables. (Contributed by Thierry Arnoux, 17-Aug-2017.)
Hypotheses
Ref Expression
f1od2.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
f1od2.2  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  C  e.  W )
f1od2.3  |-  ( (
ph  /\  z  e.  D )  ->  (
I  e.  X  /\  J  e.  Y )
)
f1od2.4  |-  ( ph  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( z  e.  D  /\  (
x  =  I  /\  y  =  J )
) ) )
Assertion
Ref Expression
f1od2  |-  ( ph  ->  F : ( A  X.  B ) -1-1-onto-> D )
Distinct variable groups:    x, y, z, A    x, B, y, z    z, C    x, D, y, z    x, I, y    x, J, y    ph, x, y, z
Allowed substitution hints:    C( x, y)    F( x, y, z)    I(
z)    J( z)    W( x, y, z)    X( x, y, z)    Y( x, y, z)

Proof of Theorem f1od2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 f1od2.2 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  C  e.  W )
21ralrimivva 2552 . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  C  e.  W )
3 f1od2.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
43fnmpo 6181 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  W  ->  F  Fn  ( A  X.  B
) )
52, 4syl 14 . 2  |-  ( ph  ->  F  Fn  ( A  X.  B ) )
6 f1od2.3 . . . . . 6  |-  ( (
ph  /\  z  e.  D )  ->  (
I  e.  X  /\  J  e.  Y )
)
7 opelxpi 4643 . . . . . 6  |-  ( ( I  e.  X  /\  J  e.  Y )  -> 
<. I ,  J >.  e.  ( X  X.  Y
) )
86, 7syl 14 . . . . 5  |-  ( (
ph  /\  z  e.  D )  ->  <. I ,  J >.  e.  ( X  X.  Y ) )
98ralrimiva 2543 . . . 4  |-  ( ph  ->  A. z  e.  D  <. I ,  J >.  e.  ( X  X.  Y
) )
10 eqid 2170 . . . . 5  |-  ( z  e.  D  |->  <. I ,  J >. )  =  ( z  e.  D  |->  <.
I ,  J >. )
1110fnmpt 5324 . . . 4  |-  ( A. z  e.  D  <. I ,  J >.  e.  ( X  X.  Y )  ->  ( z  e.  D  |->  <. I ,  J >. )  Fn  D )
129, 11syl 14 . . 3  |-  ( ph  ->  ( z  e.  D  |-> 
<. I ,  J >. )  Fn  D )
13 elxp7 6149 . . . . . . . 8  |-  ( a  e.  ( A  X.  B )  <->  ( a  e.  ( _V  X.  _V )  /\  ( ( 1st `  a )  e.  A  /\  ( 2nd `  a
)  e.  B ) ) )
1413anbi1i 455 . . . . . . 7  |-  ( ( a  e.  ( A  X.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C )  <->  ( (
a  e.  ( _V 
X.  _V )  /\  (
( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B ) )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C ) )
15 anass 399 . . . . . . . . 9  |-  ( ( ( a  e.  ( _V  X.  _V )  /\  ( ( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B ) )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C )  <->  ( a  e.  ( _V  X.  _V )  /\  ( ( ( 1st `  a )  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) ) )
16 f1od2.4 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( z  e.  D  /\  (
x  =  I  /\  y  =  J )
) ) )
1716sbcbidv 3013 . . . . . . . . . . . 12  |-  ( ph  ->  ( [. ( 2nd `  a )  /  y ]. ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  [. ( 2nd `  a )  /  y ]. ( z  e.  D  /\  ( x  =  I  /\  y  =  J ) ) ) )
1817sbcbidv 3013 . . . . . . . . . . 11  |-  ( ph  ->  ( [. ( 1st `  a )  /  x ]. [. ( 2nd `  a
)  /  y ]. ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  [. ( 1st `  a )  /  x ]. [. ( 2nd `  a
)  /  y ]. ( z  e.  D  /\  ( x  =  I  /\  y  =  J ) ) ) )
19 sbcan 2997 . . . . . . . . . . . . . 14  |-  ( [. ( 2nd `  a )  /  y ]. (
( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  <->  ( [. ( 2nd `  a )  /  y ]. (
x  e.  A  /\  y  e.  B )  /\  [. ( 2nd `  a
)  /  y ]. z  =  C )
)
20 sbcan 2997 . . . . . . . . . . . . . . . 16  |-  ( [. ( 2nd `  a )  /  y ]. (
x  e.  A  /\  y  e.  B )  <->  (
[. ( 2nd `  a
)  /  y ]. x  e.  A  /\  [. ( 2nd `  a
)  /  y ]. y  e.  B )
)
21 vex 2733 . . . . . . . . . . . . . . . . . . 19  |-  a  e. 
_V
22 2ndexg 6147 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  _V  ->  ( 2nd `  a )  e. 
_V )
2321, 22ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( 2nd `  a )  e.  _V
24 sbcg 3024 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  a )  e.  _V  ->  ( [. ( 2nd `  a
)  /  y ]. x  e.  A  <->  x  e.  A ) )
2523, 24ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( [. ( 2nd `  a )  /  y ]. x  e.  A  <->  x  e.  A
)
26 sbcel1v 3017 . . . . . . . . . . . . . . . . 17  |-  ( [. ( 2nd `  a )  /  y ]. y  e.  B  <->  ( 2nd `  a
)  e.  B )
2725, 26anbi12i 457 . . . . . . . . . . . . . . . 16  |-  ( (
[. ( 2nd `  a
)  /  y ]. x  e.  A  /\  [. ( 2nd `  a
)  /  y ]. y  e.  B )  <->  ( x  e.  A  /\  ( 2nd `  a )  e.  B ) )
2820, 27bitri 183 . . . . . . . . . . . . . . 15  |-  ( [. ( 2nd `  a )  /  y ]. (
x  e.  A  /\  y  e.  B )  <->  ( x  e.  A  /\  ( 2nd `  a )  e.  B ) )
29 sbceq2g 3071 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  a )  e.  _V  ->  ( [. ( 2nd `  a
)  /  y ]. z  =  C  <->  z  =  [_ ( 2nd `  a
)  /  y ]_ C ) )
3023, 29ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( [. ( 2nd `  a )  /  y ]. z  =  C  <->  z  =  [_ ( 2nd `  a )  /  y ]_ C
)
3128, 30anbi12i 457 . . . . . . . . . . . . . 14  |-  ( (
[. ( 2nd `  a
)  /  y ]. ( x  e.  A  /\  y  e.  B
)  /\  [. ( 2nd `  a )  /  y ]. z  =  C
)  <->  ( ( x  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 2nd `  a
)  /  y ]_ C ) )
3219, 31bitri 183 . . . . . . . . . . . . 13  |-  ( [. ( 2nd `  a )  /  y ]. (
( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  <->  ( (
x  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 2nd `  a )  /  y ]_ C ) )
3332sbcbii 3014 . . . . . . . . . . . 12  |-  ( [. ( 1st `  a )  /  x ]. [. ( 2nd `  a )  / 
y ]. ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  [. ( 1st `  a )  /  x ]. ( ( x  e.  A  /\  ( 2nd `  a )  e.  B
)  /\  z  =  [_ ( 2nd `  a
)  /  y ]_ C ) )
34 sbcan 2997 . . . . . . . . . . . 12  |-  ( [. ( 1st `  a )  /  x ]. (
( x  e.  A  /\  ( 2nd `  a
)  e.  B )  /\  z  =  [_ ( 2nd `  a )  /  y ]_ C
)  <->  ( [. ( 1st `  a )  /  x ]. ( x  e.  A  /\  ( 2nd `  a )  e.  B
)  /\  [. ( 1st `  a )  /  x ]. z  =  [_ ( 2nd `  a )  / 
y ]_ C ) )
35 sbcan 2997 . . . . . . . . . . . . . 14  |-  ( [. ( 1st `  a )  /  x ]. (
x  e.  A  /\  ( 2nd `  a )  e.  B )  <->  ( [. ( 1st `  a )  /  x ]. x  e.  A  /\  [. ( 1st `  a )  /  x ]. ( 2nd `  a
)  e.  B ) )
36 sbcel1v 3017 . . . . . . . . . . . . . . 15  |-  ( [. ( 1st `  a )  /  x ]. x  e.  A  <->  ( 1st `  a
)  e.  A )
37 1stexg 6146 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  _V  ->  ( 1st `  a )  e. 
_V )
3821, 37ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( 1st `  a )  e.  _V
39 sbcg 3024 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  a )  e.  _V  ->  ( [. ( 1st `  a
)  /  x ]. ( 2nd `  a )  e.  B  <->  ( 2nd `  a )  e.  B
) )
4038, 39ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( [. ( 1st `  a )  /  x ]. ( 2nd `  a )  e.  B  <->  ( 2nd `  a
)  e.  B )
4136, 40anbi12i 457 . . . . . . . . . . . . . 14  |-  ( (
[. ( 1st `  a
)  /  x ]. x  e.  A  /\  [. ( 1st `  a
)  /  x ]. ( 2nd `  a )  e.  B )  <->  ( ( 1st `  a )  e.  A  /\  ( 2nd `  a )  e.  B
) )
4235, 41bitri 183 . . . . . . . . . . . . 13  |-  ( [. ( 1st `  a )  /  x ]. (
x  e.  A  /\  ( 2nd `  a )  e.  B )  <->  ( ( 1st `  a )  e.  A  /\  ( 2nd `  a )  e.  B
) )
43 sbceq2g 3071 . . . . . . . . . . . . . 14  |-  ( ( 1st `  a )  e.  _V  ->  ( [. ( 1st `  a
)  /  x ]. z  =  [_ ( 2nd `  a )  /  y ]_ C  <->  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C ) )
4438, 43ax-mp 5 . . . . . . . . . . . . 13  |-  ( [. ( 1st `  a )  /  x ]. z  =  [_ ( 2nd `  a
)  /  y ]_ C 
<->  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  /  y ]_ C )
4542, 44anbi12i 457 . . . . . . . . . . . 12  |-  ( (
[. ( 1st `  a
)  /  x ]. ( x  e.  A  /\  ( 2nd `  a
)  e.  B )  /\  [. ( 1st `  a )  /  x ]. z  =  [_ ( 2nd `  a )  / 
y ]_ C )  <->  ( (
( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) )
4633, 34, 453bitri 205 . . . . . . . . . . 11  |-  ( [. ( 1st `  a )  /  x ]. [. ( 2nd `  a )  / 
y ]. ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) )
47 sbcan 2997 . . . . . . . . . . . . . 14  |-  ( [. ( 2nd `  a )  /  y ]. (
z  e.  D  /\  ( x  =  I  /\  y  =  J
) )  <->  ( [. ( 2nd `  a )  /  y ]. z  e.  D  /\  [. ( 2nd `  a )  / 
y ]. ( x  =  I  /\  y  =  J ) ) )
48 sbcg 3024 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  a )  e.  _V  ->  ( [. ( 2nd `  a
)  /  y ]. z  e.  D  <->  z  e.  D ) )
4923, 48ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( [. ( 2nd `  a )  /  y ]. z  e.  D  <->  z  e.  D
)
50 sbcan 2997 . . . . . . . . . . . . . . . 16  |-  ( [. ( 2nd `  a )  /  y ]. (
x  =  I  /\  y  =  J )  <->  (
[. ( 2nd `  a
)  /  y ]. x  =  I  /\  [. ( 2nd `  a
)  /  y ]. y  =  J )
)
51 sbcg 3024 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  a )  e.  _V  ->  ( [. ( 2nd `  a
)  /  y ]. x  =  I  <->  x  =  I ) )
5223, 51ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( [. ( 2nd `  a )  /  y ]. x  =  I  <->  x  =  I
)
53 sbceq1g 3069 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  a )  e.  _V  ->  ( [. ( 2nd `  a
)  /  y ]. y  =  J  <->  [_ ( 2nd `  a )  /  y ]_ y  =  J
) )
5423, 53ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( [. ( 2nd `  a )  /  y ]. y  =  J  <->  [_ ( 2nd `  a
)  /  y ]_ y  =  J )
55 csbvarg 3077 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2nd `  a )  e.  _V  ->  [_ ( 2nd `  a )  / 
y ]_ y  =  ( 2nd `  a ) )
5623, 55ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  [_ ( 2nd `  a )  / 
y ]_ y  =  ( 2nd `  a )
5756eqeq1i 2178 . . . . . . . . . . . . . . . . . 18  |-  ( [_ ( 2nd `  a )  /  y ]_ y  =  J  <->  ( 2nd `  a
)  =  J )
5854, 57bitri 183 . . . . . . . . . . . . . . . . 17  |-  ( [. ( 2nd `  a )  /  y ]. y  =  J  <->  ( 2nd `  a
)  =  J )
5952, 58anbi12i 457 . . . . . . . . . . . . . . . 16  |-  ( (
[. ( 2nd `  a
)  /  y ]. x  =  I  /\  [. ( 2nd `  a
)  /  y ]. y  =  J )  <->  ( x  =  I  /\  ( 2nd `  a )  =  J ) )
6050, 59bitri 183 . . . . . . . . . . . . . . 15  |-  ( [. ( 2nd `  a )  /  y ]. (
x  =  I  /\  y  =  J )  <->  ( x  =  I  /\  ( 2nd `  a )  =  J ) )
6149, 60anbi12i 457 . . . . . . . . . . . . . 14  |-  ( (
[. ( 2nd `  a
)  /  y ]. z  e.  D  /\  [. ( 2nd `  a
)  /  y ]. ( x  =  I  /\  y  =  J
) )  <->  ( z  e.  D  /\  (
x  =  I  /\  ( 2nd `  a )  =  J ) ) )
6247, 61bitri 183 . . . . . . . . . . . . 13  |-  ( [. ( 2nd `  a )  /  y ]. (
z  e.  D  /\  ( x  =  I  /\  y  =  J
) )  <->  ( z  e.  D  /\  (
x  =  I  /\  ( 2nd `  a )  =  J ) ) )
6362sbcbii 3014 . . . . . . . . . . . 12  |-  ( [. ( 1st `  a )  /  x ]. [. ( 2nd `  a )  / 
y ]. ( z  e.  D  /\  ( x  =  I  /\  y  =  J ) )  <->  [. ( 1st `  a )  /  x ]. ( z  e.  D  /\  ( x  =  I  /\  ( 2nd `  a
)  =  J ) ) )
64 sbcan 2997 . . . . . . . . . . . 12  |-  ( [. ( 1st `  a )  /  x ]. (
z  e.  D  /\  ( x  =  I  /\  ( 2nd `  a
)  =  J ) )  <->  ( [. ( 1st `  a )  /  x ]. z  e.  D  /\  [. ( 1st `  a
)  /  x ]. ( x  =  I  /\  ( 2nd `  a
)  =  J ) ) )
65 sbcg 3024 . . . . . . . . . . . . . 14  |-  ( ( 1st `  a )  e.  _V  ->  ( [. ( 1st `  a
)  /  x ]. z  e.  D  <->  z  e.  D ) )
6638, 65ax-mp 5 . . . . . . . . . . . . 13  |-  ( [. ( 1st `  a )  /  x ]. z  e.  D  <->  z  e.  D
)
67 sbcan 2997 . . . . . . . . . . . . . 14  |-  ( [. ( 1st `  a )  /  x ]. (
x  =  I  /\  ( 2nd `  a )  =  J )  <->  ( [. ( 1st `  a )  /  x ]. x  =  I  /\  [. ( 1st `  a )  /  x ]. ( 2nd `  a
)  =  J ) )
68 sbceq1g 3069 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  a )  e.  _V  ->  ( [. ( 1st `  a
)  /  x ]. x  =  I  <->  [_ ( 1st `  a )  /  x ]_ x  =  I
) )
6938, 68ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( [. ( 1st `  a )  /  x ]. x  =  I  <->  [_ ( 1st `  a
)  /  x ]_ x  =  I )
70 csbvarg 3077 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  a )  e.  _V  ->  [_ ( 1st `  a )  /  x ]_ x  =  ( 1st `  a ) )
7138, 70ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  [_ ( 1st `  a )  /  x ]_ x  =  ( 1st `  a )
7271eqeq1i 2178 . . . . . . . . . . . . . . . 16  |-  ( [_ ( 1st `  a )  /  x ]_ x  =  I  <->  ( 1st `  a
)  =  I )
7369, 72bitri 183 . . . . . . . . . . . . . . 15  |-  ( [. ( 1st `  a )  /  x ]. x  =  I  <->  ( 1st `  a
)  =  I )
74 sbcg 3024 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  a )  e.  _V  ->  ( [. ( 1st `  a
)  /  x ]. ( 2nd `  a )  =  J  <->  ( 2nd `  a )  =  J ) )
7538, 74ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( [. ( 1st `  a )  /  x ]. ( 2nd `  a )  =  J  <->  ( 2nd `  a
)  =  J )
7673, 75anbi12i 457 . . . . . . . . . . . . . 14  |-  ( (
[. ( 1st `  a
)  /  x ]. x  =  I  /\  [. ( 1st `  a
)  /  x ]. ( 2nd `  a )  =  J )  <->  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) )
7767, 76bitri 183 . . . . . . . . . . . . 13  |-  ( [. ( 1st `  a )  /  x ]. (
x  =  I  /\  ( 2nd `  a )  =  J )  <->  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) )
7866, 77anbi12i 457 . . . . . . . . . . . 12  |-  ( (
[. ( 1st `  a
)  /  x ]. z  e.  D  /\  [. ( 1st `  a
)  /  x ]. ( x  =  I  /\  ( 2nd `  a
)  =  J ) )  <->  ( z  e.  D  /\  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) ) )
7963, 64, 783bitri 205 . . . . . . . . . . 11  |-  ( [. ( 1st `  a )  /  x ]. [. ( 2nd `  a )  / 
y ]. ( z  e.  D  /\  ( x  =  I  /\  y  =  J ) )  <->  ( z  e.  D  /\  (
( 1st `  a
)  =  I  /\  ( 2nd `  a )  =  J ) ) )
8018, 46, 793bitr3g 221 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( 1st `  a )  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C )  <->  ( z  e.  D  /\  (
( 1st `  a
)  =  I  /\  ( 2nd `  a )  =  J ) ) ) )
8180anbi2d 461 . . . . . . . . 9  |-  ( ph  ->  ( ( a  e.  ( _V  X.  _V )  /\  ( ( ( 1st `  a )  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) )  <->  ( a  e.  ( _V  X.  _V )  /\  ( z  e.  D  /\  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) ) ) ) )
8215, 81syl5bb 191 . . . . . . . 8  |-  ( ph  ->  ( ( ( a  e.  ( _V  X.  _V )  /\  (
( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B ) )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C )  <->  ( a  e.  ( _V  X.  _V )  /\  ( z  e.  D  /\  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) ) ) ) )
83 xpss 4719 . . . . . . . . . . . 12  |-  ( X  X.  Y )  C_  ( _V  X.  _V )
84 simprr 527 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( z  e.  D  /\  a  =  <. I ,  J >. ) )  ->  a  =  <. I ,  J >. )
858adantrr 476 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( z  e.  D  /\  a  =  <. I ,  J >. ) )  ->  <. I ,  J >.  e.  ( X  X.  Y ) )
8684, 85eqeltrd 2247 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( z  e.  D  /\  a  =  <. I ,  J >. ) )  ->  a  e.  ( X  X.  Y
) )
8783, 86sselid 3145 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  D  /\  a  =  <. I ,  J >. ) )  ->  a  e.  ( _V  X.  _V ) )
8887ex 114 . . . . . . . . . 10  |-  ( ph  ->  ( ( z  e.  D  /\  a  = 
<. I ,  J >. )  ->  a  e.  ( _V  X.  _V )
) )
8988pm4.71rd 392 . . . . . . . . 9  |-  ( ph  ->  ( ( z  e.  D  /\  a  = 
<. I ,  J >. )  <-> 
( a  e.  ( _V  X.  _V )  /\  ( z  e.  D  /\  a  =  <. I ,  J >. )
) ) )
90 eqop 6156 . . . . . . . . . . 11  |-  ( a  e.  ( _V  X.  _V )  ->  ( a  =  <. I ,  J >.  <-> 
( ( 1st `  a
)  =  I  /\  ( 2nd `  a )  =  J ) ) )
9190anbi2d 461 . . . . . . . . . 10  |-  ( a  e.  ( _V  X.  _V )  ->  ( ( z  e.  D  /\  a  =  <. I ,  J >. )  <->  ( z  e.  D  /\  (
( 1st `  a
)  =  I  /\  ( 2nd `  a )  =  J ) ) ) )
9291pm5.32i 451 . . . . . . . . 9  |-  ( ( a  e.  ( _V 
X.  _V )  /\  (
z  e.  D  /\  a  =  <. I ,  J >. ) )  <->  ( a  e.  ( _V  X.  _V )  /\  ( z  e.  D  /\  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) ) ) )
9389, 92bitr2di 196 . . . . . . . 8  |-  ( ph  ->  ( ( a  e.  ( _V  X.  _V )  /\  ( z  e.  D  /\  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) ) )  <-> 
( z  e.  D  /\  a  =  <. I ,  J >. )
) )
9482, 93bitrd 187 . . . . . . 7  |-  ( ph  ->  ( ( ( a  e.  ( _V  X.  _V )  /\  (
( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B ) )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C )  <->  ( z  e.  D  /\  a  =  <. I ,  J >. ) ) )
9514, 94syl5bb 191 . . . . . 6  |-  ( ph  ->  ( ( a  e.  ( A  X.  B
)  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C )  <->  ( z  e.  D  /\  a  =  <. I ,  J >. ) ) )
9695opabbidv 4055 . . . . 5  |-  ( ph  ->  { <. z ,  a
>.  |  ( a  e.  ( A  X.  B
)  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) }  =  { <. z ,  a
>.  |  ( z  e.  D  /\  a  =  <. I ,  J >. ) } )
97 df-mpo 5858 . . . . . . . 8  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
983, 97eqtri 2191 . . . . . . 7  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
9998cnveqi 4786 . . . . . 6  |-  `' F  =  `' { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
100 nfv 1521 . . . . . . . 8  |-  F/ x  a  e.  ( A  X.  B )
101 nfcsb1v 3082 . . . . . . . . 9  |-  F/_ x [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C
102101nfeq2 2324 . . . . . . . 8  |-  F/ x  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C
103100, 102nfan 1558 . . . . . . 7  |-  F/ x
( a  e.  ( A  X.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C )
104 nfv 1521 . . . . . . . 8  |-  F/ y  a  e.  ( A  X.  B )
105 nfcv 2312 . . . . . . . . . 10  |-  F/_ y
( 1st `  a
)
106 nfcsb1v 3082 . . . . . . . . . 10  |-  F/_ y [_ ( 2nd `  a
)  /  y ]_ C
107105, 106nfcsb 3086 . . . . . . . . 9  |-  F/_ y [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C
108107nfeq2 2324 . . . . . . . 8  |-  F/ y  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  /  y ]_ C
109104, 108nfan 1558 . . . . . . 7  |-  F/ y ( a  e.  ( A  X.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C )
110 eleq1 2233 . . . . . . . . 9  |-  ( a  =  <. x ,  y
>.  ->  ( a  e.  ( A  X.  B
)  <->  <. x ,  y
>.  e.  ( A  X.  B ) ) )
111 opelxp 4641 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
112110, 111bitrdi 195 . . . . . . . 8  |-  ( a  =  <. x ,  y
>.  ->  ( a  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) ) )
113 csbopeq1a 6167 . . . . . . . . 9  |-  ( a  =  <. x ,  y
>.  ->  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C  =  C )
114113eqeq2d 2182 . . . . . . . 8  |-  ( a  =  <. x ,  y
>.  ->  ( z  = 
[_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C 
<->  z  =  C ) )
115112, 114anbi12d 470 . . . . . . 7  |-  ( a  =  <. x ,  y
>.  ->  ( ( a  e.  ( A  X.  B )  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) ) )
116 xpss 4719 . . . . . . . . 9  |-  ( A  X.  B )  C_  ( _V  X.  _V )
117116sseli 3143 . . . . . . . 8  |-  ( a  e.  ( A  X.  B )  ->  a  e.  ( _V  X.  _V ) )
118117adantr 274 . . . . . . 7  |-  ( ( a  e.  ( A  X.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C )  ->  a  e.  ( _V  X.  _V ) )
119103, 109, 115, 118cnvoprab 6213 . . . . . 6  |-  `' { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { <. z ,  a
>.  |  ( a  e.  ( A  X.  B
)  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) }
12099, 119eqtri 2191 . . . . 5  |-  `' F  =  { <. z ,  a
>.  |  ( a  e.  ( A  X.  B
)  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) }
121 df-mpt 4052 . . . . 5  |-  ( z  e.  D  |->  <. I ,  J >. )  =  { <. z ,  a >.  |  ( z  e.  D  /\  a  = 
<. I ,  J >. ) }
12296, 120, 1213eqtr4g 2228 . . . 4  |-  ( ph  ->  `' F  =  (
z  e.  D  |->  <.
I ,  J >. ) )
123122fneq1d 5288 . . 3  |-  ( ph  ->  ( `' F  Fn  D 
<->  ( z  e.  D  |-> 
<. I ,  J >. )  Fn  D ) )
12412, 123mpbird 166 . 2  |-  ( ph  ->  `' F  Fn  D
)
125 dff1o4 5450 . 2  |-  ( F : ( A  X.  B ) -1-1-onto-> D  <->  ( F  Fn  ( A  X.  B
)  /\  `' F  Fn  D ) )
1265, 124, 125sylanbrc 415 1  |-  ( ph  ->  F : ( A  X.  B ) -1-1-onto-> D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   _Vcvv 2730   [.wsbc 2955   [_csb 3049   <.cop 3586   {copab 4049    |-> cmpt 4050    X. cxp 4609   `'ccnv 4610    Fn wfn 5193   -1-1-onto->wf1o 5197   ` cfv 5198   {coprab 5854    e. cmpo 5855   1stc1st 6117   2ndc2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120
This theorem is referenced by:  oddpwdc  12128
  Copyright terms: Public domain W3C validator