ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1od2 Unicode version

Theorem f1od2 6230
Description: Describe an implicit one-to-one onto function of two variables. (Contributed by Thierry Arnoux, 17-Aug-2017.)
Hypotheses
Ref Expression
f1od2.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
f1od2.2  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  C  e.  W )
f1od2.3  |-  ( (
ph  /\  z  e.  D )  ->  (
I  e.  X  /\  J  e.  Y )
)
f1od2.4  |-  ( ph  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( z  e.  D  /\  (
x  =  I  /\  y  =  J )
) ) )
Assertion
Ref Expression
f1od2  |-  ( ph  ->  F : ( A  X.  B ) -1-1-onto-> D )
Distinct variable groups:    x, y, z, A    x, B, y, z    z, C    x, D, y, z    x, I, y    x, J, y    ph, x, y, z
Allowed substitution hints:    C( x, y)    F( x, y, z)    I(
z)    J( z)    W( x, y, z)    X( x, y, z)    Y( x, y, z)

Proof of Theorem f1od2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 f1od2.2 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  C  e.  W )
21ralrimivva 2559 . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  C  e.  W )
3 f1od2.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
43fnmpo 6197 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  W  ->  F  Fn  ( A  X.  B
) )
52, 4syl 14 . 2  |-  ( ph  ->  F  Fn  ( A  X.  B ) )
6 f1od2.3 . . . . . 6  |-  ( (
ph  /\  z  e.  D )  ->  (
I  e.  X  /\  J  e.  Y )
)
7 opelxpi 4655 . . . . . 6  |-  ( ( I  e.  X  /\  J  e.  Y )  -> 
<. I ,  J >.  e.  ( X  X.  Y
) )
86, 7syl 14 . . . . 5  |-  ( (
ph  /\  z  e.  D )  ->  <. I ,  J >.  e.  ( X  X.  Y ) )
98ralrimiva 2550 . . . 4  |-  ( ph  ->  A. z  e.  D  <. I ,  J >.  e.  ( X  X.  Y
) )
10 eqid 2177 . . . . 5  |-  ( z  e.  D  |->  <. I ,  J >. )  =  ( z  e.  D  |->  <.
I ,  J >. )
1110fnmpt 5338 . . . 4  |-  ( A. z  e.  D  <. I ,  J >.  e.  ( X  X.  Y )  ->  ( z  e.  D  |->  <. I ,  J >. )  Fn  D )
129, 11syl 14 . . 3  |-  ( ph  ->  ( z  e.  D  |-> 
<. I ,  J >. )  Fn  D )
13 elxp7 6165 . . . . . . . 8  |-  ( a  e.  ( A  X.  B )  <->  ( a  e.  ( _V  X.  _V )  /\  ( ( 1st `  a )  e.  A  /\  ( 2nd `  a
)  e.  B ) ) )
1413anbi1i 458 . . . . . . 7  |-  ( ( a  e.  ( A  X.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C )  <->  ( (
a  e.  ( _V 
X.  _V )  /\  (
( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B ) )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C ) )
15 anass 401 . . . . . . . . 9  |-  ( ( ( a  e.  ( _V  X.  _V )  /\  ( ( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B ) )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C )  <->  ( a  e.  ( _V  X.  _V )  /\  ( ( ( 1st `  a )  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) ) )
16 f1od2.4 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( z  e.  D  /\  (
x  =  I  /\  y  =  J )
) ) )
1716sbcbidv 3021 . . . . . . . . . . . 12  |-  ( ph  ->  ( [. ( 2nd `  a )  /  y ]. ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  [. ( 2nd `  a )  /  y ]. ( z  e.  D  /\  ( x  =  I  /\  y  =  J ) ) ) )
1817sbcbidv 3021 . . . . . . . . . . 11  |-  ( ph  ->  ( [. ( 1st `  a )  /  x ]. [. ( 2nd `  a
)  /  y ]. ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  [. ( 1st `  a )  /  x ]. [. ( 2nd `  a
)  /  y ]. ( z  e.  D  /\  ( x  =  I  /\  y  =  J ) ) ) )
19 sbcan 3005 . . . . . . . . . . . . . 14  |-  ( [. ( 2nd `  a )  /  y ]. (
( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  <->  ( [. ( 2nd `  a )  /  y ]. (
x  e.  A  /\  y  e.  B )  /\  [. ( 2nd `  a
)  /  y ]. z  =  C )
)
20 sbcan 3005 . . . . . . . . . . . . . . . 16  |-  ( [. ( 2nd `  a )  /  y ]. (
x  e.  A  /\  y  e.  B )  <->  (
[. ( 2nd `  a
)  /  y ]. x  e.  A  /\  [. ( 2nd `  a
)  /  y ]. y  e.  B )
)
21 vex 2740 . . . . . . . . . . . . . . . . . . 19  |-  a  e. 
_V
22 2ndexg 6163 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  _V  ->  ( 2nd `  a )  e. 
_V )
2321, 22ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( 2nd `  a )  e.  _V
24 sbcg 3032 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  a )  e.  _V  ->  ( [. ( 2nd `  a
)  /  y ]. x  e.  A  <->  x  e.  A ) )
2523, 24ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( [. ( 2nd `  a )  /  y ]. x  e.  A  <->  x  e.  A
)
26 sbcel1v 3025 . . . . . . . . . . . . . . . . 17  |-  ( [. ( 2nd `  a )  /  y ]. y  e.  B  <->  ( 2nd `  a
)  e.  B )
2725, 26anbi12i 460 . . . . . . . . . . . . . . . 16  |-  ( (
[. ( 2nd `  a
)  /  y ]. x  e.  A  /\  [. ( 2nd `  a
)  /  y ]. y  e.  B )  <->  ( x  e.  A  /\  ( 2nd `  a )  e.  B ) )
2820, 27bitri 184 . . . . . . . . . . . . . . 15  |-  ( [. ( 2nd `  a )  /  y ]. (
x  e.  A  /\  y  e.  B )  <->  ( x  e.  A  /\  ( 2nd `  a )  e.  B ) )
29 sbceq2g 3079 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  a )  e.  _V  ->  ( [. ( 2nd `  a
)  /  y ]. z  =  C  <->  z  =  [_ ( 2nd `  a
)  /  y ]_ C ) )
3023, 29ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( [. ( 2nd `  a )  /  y ]. z  =  C  <->  z  =  [_ ( 2nd `  a )  /  y ]_ C
)
3128, 30anbi12i 460 . . . . . . . . . . . . . 14  |-  ( (
[. ( 2nd `  a
)  /  y ]. ( x  e.  A  /\  y  e.  B
)  /\  [. ( 2nd `  a )  /  y ]. z  =  C
)  <->  ( ( x  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 2nd `  a
)  /  y ]_ C ) )
3219, 31bitri 184 . . . . . . . . . . . . 13  |-  ( [. ( 2nd `  a )  /  y ]. (
( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  <->  ( (
x  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 2nd `  a )  /  y ]_ C ) )
3332sbcbii 3022 . . . . . . . . . . . 12  |-  ( [. ( 1st `  a )  /  x ]. [. ( 2nd `  a )  / 
y ]. ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  [. ( 1st `  a )  /  x ]. ( ( x  e.  A  /\  ( 2nd `  a )  e.  B
)  /\  z  =  [_ ( 2nd `  a
)  /  y ]_ C ) )
34 sbcan 3005 . . . . . . . . . . . 12  |-  ( [. ( 1st `  a )  /  x ]. (
( x  e.  A  /\  ( 2nd `  a
)  e.  B )  /\  z  =  [_ ( 2nd `  a )  /  y ]_ C
)  <->  ( [. ( 1st `  a )  /  x ]. ( x  e.  A  /\  ( 2nd `  a )  e.  B
)  /\  [. ( 1st `  a )  /  x ]. z  =  [_ ( 2nd `  a )  / 
y ]_ C ) )
35 sbcan 3005 . . . . . . . . . . . . . 14  |-  ( [. ( 1st `  a )  /  x ]. (
x  e.  A  /\  ( 2nd `  a )  e.  B )  <->  ( [. ( 1st `  a )  /  x ]. x  e.  A  /\  [. ( 1st `  a )  /  x ]. ( 2nd `  a
)  e.  B ) )
36 sbcel1v 3025 . . . . . . . . . . . . . . 15  |-  ( [. ( 1st `  a )  /  x ]. x  e.  A  <->  ( 1st `  a
)  e.  A )
37 1stexg 6162 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  _V  ->  ( 1st `  a )  e. 
_V )
3821, 37ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( 1st `  a )  e.  _V
39 sbcg 3032 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  a )  e.  _V  ->  ( [. ( 1st `  a
)  /  x ]. ( 2nd `  a )  e.  B  <->  ( 2nd `  a )  e.  B
) )
4038, 39ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( [. ( 1st `  a )  /  x ]. ( 2nd `  a )  e.  B  <->  ( 2nd `  a
)  e.  B )
4136, 40anbi12i 460 . . . . . . . . . . . . . 14  |-  ( (
[. ( 1st `  a
)  /  x ]. x  e.  A  /\  [. ( 1st `  a
)  /  x ]. ( 2nd `  a )  e.  B )  <->  ( ( 1st `  a )  e.  A  /\  ( 2nd `  a )  e.  B
) )
4235, 41bitri 184 . . . . . . . . . . . . 13  |-  ( [. ( 1st `  a )  /  x ]. (
x  e.  A  /\  ( 2nd `  a )  e.  B )  <->  ( ( 1st `  a )  e.  A  /\  ( 2nd `  a )  e.  B
) )
43 sbceq2g 3079 . . . . . . . . . . . . . 14  |-  ( ( 1st `  a )  e.  _V  ->  ( [. ( 1st `  a
)  /  x ]. z  =  [_ ( 2nd `  a )  /  y ]_ C  <->  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C ) )
4438, 43ax-mp 5 . . . . . . . . . . . . 13  |-  ( [. ( 1st `  a )  /  x ]. z  =  [_ ( 2nd `  a
)  /  y ]_ C 
<->  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  /  y ]_ C )
4542, 44anbi12i 460 . . . . . . . . . . . 12  |-  ( (
[. ( 1st `  a
)  /  x ]. ( x  e.  A  /\  ( 2nd `  a
)  e.  B )  /\  [. ( 1st `  a )  /  x ]. z  =  [_ ( 2nd `  a )  / 
y ]_ C )  <->  ( (
( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) )
4633, 34, 453bitri 206 . . . . . . . . . . 11  |-  ( [. ( 1st `  a )  /  x ]. [. ( 2nd `  a )  / 
y ]. ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) )
47 sbcan 3005 . . . . . . . . . . . . . 14  |-  ( [. ( 2nd `  a )  /  y ]. (
z  e.  D  /\  ( x  =  I  /\  y  =  J
) )  <->  ( [. ( 2nd `  a )  /  y ]. z  e.  D  /\  [. ( 2nd `  a )  / 
y ]. ( x  =  I  /\  y  =  J ) ) )
48 sbcg 3032 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  a )  e.  _V  ->  ( [. ( 2nd `  a
)  /  y ]. z  e.  D  <->  z  e.  D ) )
4923, 48ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( [. ( 2nd `  a )  /  y ]. z  e.  D  <->  z  e.  D
)
50 sbcan 3005 . . . . . . . . . . . . . . . 16  |-  ( [. ( 2nd `  a )  /  y ]. (
x  =  I  /\  y  =  J )  <->  (
[. ( 2nd `  a
)  /  y ]. x  =  I  /\  [. ( 2nd `  a
)  /  y ]. y  =  J )
)
51 sbcg 3032 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  a )  e.  _V  ->  ( [. ( 2nd `  a
)  /  y ]. x  =  I  <->  x  =  I ) )
5223, 51ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( [. ( 2nd `  a )  /  y ]. x  =  I  <->  x  =  I
)
53 sbceq1g 3077 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  a )  e.  _V  ->  ( [. ( 2nd `  a
)  /  y ]. y  =  J  <->  [_ ( 2nd `  a )  /  y ]_ y  =  J
) )
5423, 53ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( [. ( 2nd `  a )  /  y ]. y  =  J  <->  [_ ( 2nd `  a
)  /  y ]_ y  =  J )
55 csbvarg 3085 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2nd `  a )  e.  _V  ->  [_ ( 2nd `  a )  / 
y ]_ y  =  ( 2nd `  a ) )
5623, 55ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  [_ ( 2nd `  a )  / 
y ]_ y  =  ( 2nd `  a )
5756eqeq1i 2185 . . . . . . . . . . . . . . . . . 18  |-  ( [_ ( 2nd `  a )  /  y ]_ y  =  J  <->  ( 2nd `  a
)  =  J )
5854, 57bitri 184 . . . . . . . . . . . . . . . . 17  |-  ( [. ( 2nd `  a )  /  y ]. y  =  J  <->  ( 2nd `  a
)  =  J )
5952, 58anbi12i 460 . . . . . . . . . . . . . . . 16  |-  ( (
[. ( 2nd `  a
)  /  y ]. x  =  I  /\  [. ( 2nd `  a
)  /  y ]. y  =  J )  <->  ( x  =  I  /\  ( 2nd `  a )  =  J ) )
6050, 59bitri 184 . . . . . . . . . . . . . . 15  |-  ( [. ( 2nd `  a )  /  y ]. (
x  =  I  /\  y  =  J )  <->  ( x  =  I  /\  ( 2nd `  a )  =  J ) )
6149, 60anbi12i 460 . . . . . . . . . . . . . 14  |-  ( (
[. ( 2nd `  a
)  /  y ]. z  e.  D  /\  [. ( 2nd `  a
)  /  y ]. ( x  =  I  /\  y  =  J
) )  <->  ( z  e.  D  /\  (
x  =  I  /\  ( 2nd `  a )  =  J ) ) )
6247, 61bitri 184 . . . . . . . . . . . . 13  |-  ( [. ( 2nd `  a )  /  y ]. (
z  e.  D  /\  ( x  =  I  /\  y  =  J
) )  <->  ( z  e.  D  /\  (
x  =  I  /\  ( 2nd `  a )  =  J ) ) )
6362sbcbii 3022 . . . . . . . . . . . 12  |-  ( [. ( 1st `  a )  /  x ]. [. ( 2nd `  a )  / 
y ]. ( z  e.  D  /\  ( x  =  I  /\  y  =  J ) )  <->  [. ( 1st `  a )  /  x ]. ( z  e.  D  /\  ( x  =  I  /\  ( 2nd `  a
)  =  J ) ) )
64 sbcan 3005 . . . . . . . . . . . 12  |-  ( [. ( 1st `  a )  /  x ]. (
z  e.  D  /\  ( x  =  I  /\  ( 2nd `  a
)  =  J ) )  <->  ( [. ( 1st `  a )  /  x ]. z  e.  D  /\  [. ( 1st `  a
)  /  x ]. ( x  =  I  /\  ( 2nd `  a
)  =  J ) ) )
65 sbcg 3032 . . . . . . . . . . . . . 14  |-  ( ( 1st `  a )  e.  _V  ->  ( [. ( 1st `  a
)  /  x ]. z  e.  D  <->  z  e.  D ) )
6638, 65ax-mp 5 . . . . . . . . . . . . 13  |-  ( [. ( 1st `  a )  /  x ]. z  e.  D  <->  z  e.  D
)
67 sbcan 3005 . . . . . . . . . . . . . 14  |-  ( [. ( 1st `  a )  /  x ]. (
x  =  I  /\  ( 2nd `  a )  =  J )  <->  ( [. ( 1st `  a )  /  x ]. x  =  I  /\  [. ( 1st `  a )  /  x ]. ( 2nd `  a
)  =  J ) )
68 sbceq1g 3077 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  a )  e.  _V  ->  ( [. ( 1st `  a
)  /  x ]. x  =  I  <->  [_ ( 1st `  a )  /  x ]_ x  =  I
) )
6938, 68ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( [. ( 1st `  a )  /  x ]. x  =  I  <->  [_ ( 1st `  a
)  /  x ]_ x  =  I )
70 csbvarg 3085 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  a )  e.  _V  ->  [_ ( 1st `  a )  /  x ]_ x  =  ( 1st `  a ) )
7138, 70ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  [_ ( 1st `  a )  /  x ]_ x  =  ( 1st `  a )
7271eqeq1i 2185 . . . . . . . . . . . . . . . 16  |-  ( [_ ( 1st `  a )  /  x ]_ x  =  I  <->  ( 1st `  a
)  =  I )
7369, 72bitri 184 . . . . . . . . . . . . . . 15  |-  ( [. ( 1st `  a )  /  x ]. x  =  I  <->  ( 1st `  a
)  =  I )
74 sbcg 3032 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  a )  e.  _V  ->  ( [. ( 1st `  a
)  /  x ]. ( 2nd `  a )  =  J  <->  ( 2nd `  a )  =  J ) )
7538, 74ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( [. ( 1st `  a )  /  x ]. ( 2nd `  a )  =  J  <->  ( 2nd `  a
)  =  J )
7673, 75anbi12i 460 . . . . . . . . . . . . . 14  |-  ( (
[. ( 1st `  a
)  /  x ]. x  =  I  /\  [. ( 1st `  a
)  /  x ]. ( 2nd `  a )  =  J )  <->  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) )
7767, 76bitri 184 . . . . . . . . . . . . 13  |-  ( [. ( 1st `  a )  /  x ]. (
x  =  I  /\  ( 2nd `  a )  =  J )  <->  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) )
7866, 77anbi12i 460 . . . . . . . . . . . 12  |-  ( (
[. ( 1st `  a
)  /  x ]. z  e.  D  /\  [. ( 1st `  a
)  /  x ]. ( x  =  I  /\  ( 2nd `  a
)  =  J ) )  <->  ( z  e.  D  /\  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) ) )
7963, 64, 783bitri 206 . . . . . . . . . . 11  |-  ( [. ( 1st `  a )  /  x ]. [. ( 2nd `  a )  / 
y ]. ( z  e.  D  /\  ( x  =  I  /\  y  =  J ) )  <->  ( z  e.  D  /\  (
( 1st `  a
)  =  I  /\  ( 2nd `  a )  =  J ) ) )
8018, 46, 793bitr3g 222 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( 1st `  a )  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C )  <->  ( z  e.  D  /\  (
( 1st `  a
)  =  I  /\  ( 2nd `  a )  =  J ) ) ) )
8180anbi2d 464 . . . . . . . . 9  |-  ( ph  ->  ( ( a  e.  ( _V  X.  _V )  /\  ( ( ( 1st `  a )  e.  A  /\  ( 2nd `  a )  e.  B )  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) )  <->  ( a  e.  ( _V  X.  _V )  /\  ( z  e.  D  /\  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) ) ) ) )
8215, 81bitrid 192 . . . . . . . 8  |-  ( ph  ->  ( ( ( a  e.  ( _V  X.  _V )  /\  (
( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B ) )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C )  <->  ( a  e.  ( _V  X.  _V )  /\  ( z  e.  D  /\  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) ) ) ) )
83 xpss 4731 . . . . . . . . . . . 12  |-  ( X  X.  Y )  C_  ( _V  X.  _V )
84 simprr 531 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( z  e.  D  /\  a  =  <. I ,  J >. ) )  ->  a  =  <. I ,  J >. )
858adantrr 479 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( z  e.  D  /\  a  =  <. I ,  J >. ) )  ->  <. I ,  J >.  e.  ( X  X.  Y ) )
8684, 85eqeltrd 2254 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( z  e.  D  /\  a  =  <. I ,  J >. ) )  ->  a  e.  ( X  X.  Y
) )
8783, 86sselid 3153 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  D  /\  a  =  <. I ,  J >. ) )  ->  a  e.  ( _V  X.  _V ) )
8887ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( ( z  e.  D  /\  a  = 
<. I ,  J >. )  ->  a  e.  ( _V  X.  _V )
) )
8988pm4.71rd 394 . . . . . . . . 9  |-  ( ph  ->  ( ( z  e.  D  /\  a  = 
<. I ,  J >. )  <-> 
( a  e.  ( _V  X.  _V )  /\  ( z  e.  D  /\  a  =  <. I ,  J >. )
) ) )
90 eqop 6172 . . . . . . . . . . 11  |-  ( a  e.  ( _V  X.  _V )  ->  ( a  =  <. I ,  J >.  <-> 
( ( 1st `  a
)  =  I  /\  ( 2nd `  a )  =  J ) ) )
9190anbi2d 464 . . . . . . . . . 10  |-  ( a  e.  ( _V  X.  _V )  ->  ( ( z  e.  D  /\  a  =  <. I ,  J >. )  <->  ( z  e.  D  /\  (
( 1st `  a
)  =  I  /\  ( 2nd `  a )  =  J ) ) ) )
9291pm5.32i 454 . . . . . . . . 9  |-  ( ( a  e.  ( _V 
X.  _V )  /\  (
z  e.  D  /\  a  =  <. I ,  J >. ) )  <->  ( a  e.  ( _V  X.  _V )  /\  ( z  e.  D  /\  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) ) ) )
9389, 92bitr2di 197 . . . . . . . 8  |-  ( ph  ->  ( ( a  e.  ( _V  X.  _V )  /\  ( z  e.  D  /\  ( ( 1st `  a )  =  I  /\  ( 2nd `  a )  =  J ) ) )  <-> 
( z  e.  D  /\  a  =  <. I ,  J >. )
) )
9482, 93bitrd 188 . . . . . . 7  |-  ( ph  ->  ( ( ( a  e.  ( _V  X.  _V )  /\  (
( 1st `  a
)  e.  A  /\  ( 2nd `  a )  e.  B ) )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C )  <->  ( z  e.  D  /\  a  =  <. I ,  J >. ) ) )
9514, 94bitrid 192 . . . . . 6  |-  ( ph  ->  ( ( a  e.  ( A  X.  B
)  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C )  <->  ( z  e.  D  /\  a  =  <. I ,  J >. ) ) )
9695opabbidv 4066 . . . . 5  |-  ( ph  ->  { <. z ,  a
>.  |  ( a  e.  ( A  X.  B
)  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) }  =  { <. z ,  a
>.  |  ( z  e.  D  /\  a  =  <. I ,  J >. ) } )
97 df-mpo 5874 . . . . . . . 8  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
983, 97eqtri 2198 . . . . . . 7  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
9998cnveqi 4798 . . . . . 6  |-  `' F  =  `' { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
100 nfv 1528 . . . . . . . 8  |-  F/ x  a  e.  ( A  X.  B )
101 nfcsb1v 3090 . . . . . . . . 9  |-  F/_ x [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C
102101nfeq2 2331 . . . . . . . 8  |-  F/ x  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C
103100, 102nfan 1565 . . . . . . 7  |-  F/ x
( a  e.  ( A  X.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C )
104 nfv 1528 . . . . . . . 8  |-  F/ y  a  e.  ( A  X.  B )
105 nfcv 2319 . . . . . . . . . 10  |-  F/_ y
( 1st `  a
)
106 nfcsb1v 3090 . . . . . . . . . 10  |-  F/_ y [_ ( 2nd `  a
)  /  y ]_ C
107105, 106nfcsb 3094 . . . . . . . . 9  |-  F/_ y [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C
108107nfeq2 2331 . . . . . . . 8  |-  F/ y  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  /  y ]_ C
109104, 108nfan 1565 . . . . . . 7  |-  F/ y ( a  e.  ( A  X.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a )  / 
y ]_ C )
110 eleq1 2240 . . . . . . . . 9  |-  ( a  =  <. x ,  y
>.  ->  ( a  e.  ( A  X.  B
)  <->  <. x ,  y
>.  e.  ( A  X.  B ) ) )
111 opelxp 4653 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
112110, 111bitrdi 196 . . . . . . . 8  |-  ( a  =  <. x ,  y
>.  ->  ( a  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) ) )
113 csbopeq1a 6183 . . . . . . . . 9  |-  ( a  =  <. x ,  y
>.  ->  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C  =  C )
114113eqeq2d 2189 . . . . . . . 8  |-  ( a  =  <. x ,  y
>.  ->  ( z  = 
[_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C 
<->  z  =  C ) )
115112, 114anbi12d 473 . . . . . . 7  |-  ( a  =  <. x ,  y
>.  ->  ( ( a  e.  ( A  X.  B )  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) ) )
116 xpss 4731 . . . . . . . . 9  |-  ( A  X.  B )  C_  ( _V  X.  _V )
117116sseli 3151 . . . . . . . 8  |-  ( a  e.  ( A  X.  B )  ->  a  e.  ( _V  X.  _V ) )
118117adantr 276 . . . . . . 7  |-  ( ( a  e.  ( A  X.  B )  /\  z  =  [_ ( 1st `  a )  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C )  ->  a  e.  ( _V  X.  _V ) )
119103, 109, 115, 118cnvoprab 6229 . . . . . 6  |-  `' { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { <. z ,  a
>.  |  ( a  e.  ( A  X.  B
)  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) }
12099, 119eqtri 2198 . . . . 5  |-  `' F  =  { <. z ,  a
>.  |  ( a  e.  ( A  X.  B
)  /\  z  =  [_ ( 1st `  a
)  /  x ]_ [_ ( 2nd `  a
)  /  y ]_ C ) }
121 df-mpt 4063 . . . . 5  |-  ( z  e.  D  |->  <. I ,  J >. )  =  { <. z ,  a >.  |  ( z  e.  D  /\  a  = 
<. I ,  J >. ) }
12296, 120, 1213eqtr4g 2235 . . . 4  |-  ( ph  ->  `' F  =  (
z  e.  D  |->  <.
I ,  J >. ) )
123122fneq1d 5302 . . 3  |-  ( ph  ->  ( `' F  Fn  D 
<->  ( z  e.  D  |-> 
<. I ,  J >. )  Fn  D ) )
12412, 123mpbird 167 . 2  |-  ( ph  ->  `' F  Fn  D
)
125 dff1o4 5465 . 2  |-  ( F : ( A  X.  B ) -1-1-onto-> D  <->  ( F  Fn  ( A  X.  B
)  /\  `' F  Fn  D ) )
1265, 124, 125sylanbrc 417 1  |-  ( ph  ->  F : ( A  X.  B ) -1-1-onto-> D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2737   [.wsbc 2962   [_csb 3057   <.cop 3594   {copab 4060    |-> cmpt 4061    X. cxp 4621   `'ccnv 4622    Fn wfn 5207   -1-1-onto->wf1o 5211   ` cfv 5212   {coprab 5870    e. cmpo 5871   1stc1st 6133   2ndc2nd 6134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136
This theorem is referenced by:  oddpwdc  12157
  Copyright terms: Public domain W3C validator