ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincosq4sgn Unicode version

Theorem sincosq4sgn 15112
Description: The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq4sgn  |-  ( A  e.  ( ( 3  x.  ( pi  / 
2 ) ) (,) ( 2  x.  pi ) )  ->  (
( sin `  A
)  <  0  /\  0  <  ( cos `  A
) ) )

Proof of Theorem sincosq4sgn
StepHypRef Expression
1 3re 9069 . . . . 5  |-  3  e.  RR
2 halfpire 15075 . . . . 5  |-  ( pi 
/  2 )  e.  RR
31, 2remulcli 8045 . . . 4  |-  ( 3  x.  ( pi  / 
2 ) )  e.  RR
43rexri 8089 . . 3  |-  ( 3  x.  ( pi  / 
2 ) )  e. 
RR*
5 2re 9065 . . . . 5  |-  2  e.  RR
6 pire 15069 . . . . 5  |-  pi  e.  RR
75, 6remulcli 8045 . . . 4  |-  ( 2  x.  pi )  e.  RR
87rexri 8089 . . 3  |-  ( 2  x.  pi )  e. 
RR*
9 elioo2 10001 . . 3  |-  ( ( ( 3  x.  (
pi  /  2 ) )  e.  RR*  /\  (
2  x.  pi )  e.  RR* )  ->  ( A  e.  ( (
3  x.  ( pi 
/  2 ) ) (,) ( 2  x.  pi ) )  <->  ( A  e.  RR  /\  ( 3  x.  ( pi  / 
2 ) )  < 
A  /\  A  <  ( 2  x.  pi ) ) ) )
104, 8, 9mp2an 426 . 2  |-  ( A  e.  ( ( 3  x.  ( pi  / 
2 ) ) (,) ( 2  x.  pi ) )  <->  ( A  e.  RR  /\  ( 3  x.  ( pi  / 
2 ) )  < 
A  /\  A  <  ( 2  x.  pi ) ) )
11 df-3 9055 . . . . . . . . . . . 12  |-  3  =  ( 2  +  1 )
1211oveq1i 5935 . . . . . . . . . . 11  |-  ( 3  x.  ( pi  / 
2 ) )  =  ( ( 2  +  1 )  x.  (
pi  /  2 ) )
13 2cn 9066 . . . . . . . . . . . 12  |-  2  e.  CC
14 ax-1cn 7977 . . . . . . . . . . . 12  |-  1  e.  CC
152recni 8043 . . . . . . . . . . . 12  |-  ( pi 
/  2 )  e.  CC
1613, 14, 15adddiri 8042 . . . . . . . . . . 11  |-  ( ( 2  +  1 )  x.  ( pi  / 
2 ) )  =  ( ( 2  x.  ( pi  /  2
) )  +  ( 1  x.  ( pi 
/  2 ) ) )
176recni 8043 . . . . . . . . . . . . 13  |-  pi  e.  CC
18 2ap0 9088 . . . . . . . . . . . . 13  |-  2 #  0
1917, 13, 18divcanap2i 8787 . . . . . . . . . . . 12  |-  ( 2  x.  ( pi  / 
2 ) )  =  pi
2015mullidi 8034 . . . . . . . . . . . 12  |-  ( 1  x.  ( pi  / 
2 ) )  =  ( pi  /  2
)
2119, 20oveq12i 5937 . . . . . . . . . . 11  |-  ( ( 2  x.  ( pi 
/  2 ) )  +  ( 1  x.  ( pi  /  2
) ) )  =  ( pi  +  ( pi  /  2 ) )
2212, 16, 213eqtrri 2222 . . . . . . . . . 10  |-  ( pi  +  ( pi  / 
2 ) )  =  ( 3  x.  (
pi  /  2 ) )
2322breq1i 4041 . . . . . . . . 9  |-  ( ( pi  +  ( pi 
/  2 ) )  <  A  <->  ( 3  x.  ( pi  / 
2 ) )  < 
A )
24 ltaddsub 8468 . . . . . . . . . 10  |-  ( ( pi  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  A  e.  RR )  ->  ( ( pi  +  ( pi  /  2
) )  <  A  <->  pi 
<  ( A  -  ( pi  /  2
) ) ) )
256, 2, 24mp3an12 1338 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( pi  +  ( pi  /  2 ) )  <  A  <->  pi  <  ( A  -  ( pi 
/  2 ) ) ) )
2623, 25bitr3id 194 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( 3  x.  (
pi  /  2 ) )  <  A  <->  pi  <  ( A  -  ( pi 
/  2 ) ) ) )
27 ltsubadd 8464 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  ( 3  x.  (
pi  /  2 ) )  e.  RR )  ->  ( ( A  -  ( pi  / 
2 ) )  < 
( 3  x.  (
pi  /  2 ) )  <->  A  <  ( ( 3  x.  ( pi 
/  2 ) )  +  ( pi  / 
2 ) ) ) )
282, 3, 27mp3an23 1340 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( A  -  (
pi  /  2 ) )  <  ( 3  x.  ( pi  / 
2 ) )  <->  A  <  ( ( 3  x.  (
pi  /  2 ) )  +  ( pi 
/  2 ) ) ) )
29 df-4 9056 . . . . . . . . . . . . 13  |-  4  =  ( 3  +  1 )
3029oveq1i 5935 . . . . . . . . . . . 12  |-  ( 4  x.  ( pi  / 
2 ) )  =  ( ( 3  +  1 )  x.  (
pi  /  2 ) )
311recni 8043 . . . . . . . . . . . . 13  |-  3  e.  CC
3231, 14, 15adddiri 8042 . . . . . . . . . . . 12  |-  ( ( 3  +  1 )  x.  ( pi  / 
2 ) )  =  ( ( 3  x.  ( pi  /  2
) )  +  ( 1  x.  ( pi 
/  2 ) ) )
3320oveq2i 5936 . . . . . . . . . . . 12  |-  ( ( 3  x.  ( pi 
/  2 ) )  +  ( 1  x.  ( pi  /  2
) ) )  =  ( ( 3  x.  ( pi  /  2
) )  +  ( pi  /  2 ) )
3430, 32, 333eqtrri 2222 . . . . . . . . . . 11  |-  ( ( 3  x.  ( pi 
/  2 ) )  +  ( pi  / 
2 ) )  =  ( 4  x.  (
pi  /  2 ) )
35 4cn 9073 . . . . . . . . . . . . 13  |-  4  e.  CC
3613, 18pm3.2i 272 . . . . . . . . . . . . 13  |-  ( 2  e.  CC  /\  2 #  0 )
37 div12ap 8726 . . . . . . . . . . . . 13  |-  ( ( 4  e.  CC  /\  pi  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( 4  x.  (
pi  /  2 ) )  =  ( pi  x.  ( 4  / 
2 ) ) )
3835, 17, 36, 37mp3an 1348 . . . . . . . . . . . 12  |-  ( 4  x.  ( pi  / 
2 ) )  =  ( pi  x.  (
4  /  2 ) )
39 4d2e2 9156 . . . . . . . . . . . . . 14  |-  ( 4  /  2 )  =  2
4039oveq2i 5936 . . . . . . . . . . . . 13  |-  ( pi  x.  ( 4  / 
2 ) )  =  ( pi  x.  2 )
4117, 13mulcomi 8037 . . . . . . . . . . . . 13  |-  ( pi  x.  2 )  =  ( 2  x.  pi )
4240, 41eqtri 2217 . . . . . . . . . . . 12  |-  ( pi  x.  ( 4  / 
2 ) )  =  ( 2  x.  pi )
4338, 42eqtri 2217 . . . . . . . . . . 11  |-  ( 4  x.  ( pi  / 
2 ) )  =  ( 2  x.  pi )
4434, 43eqtri 2217 . . . . . . . . . 10  |-  ( ( 3  x.  ( pi 
/  2 ) )  +  ( pi  / 
2 ) )  =  ( 2  x.  pi )
4544breq2i 4042 . . . . . . . . 9  |-  ( A  <  ( ( 3  x.  ( pi  / 
2 ) )  +  ( pi  /  2
) )  <->  A  <  ( 2  x.  pi ) )
4628, 45bitr2di 197 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  <  ( 2  x.  pi )  <->  ( A  -  ( pi  / 
2 ) )  < 
( 3  x.  (
pi  /  2 ) ) ) )
4726, 46anbi12d 473 . . . . . . 7  |-  ( A  e.  RR  ->  (
( ( 3  x.  ( pi  /  2
) )  <  A  /\  A  <  ( 2  x.  pi ) )  <-> 
( pi  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  ( 3  x.  ( pi  / 
2 ) ) ) ) )
48 resubcl 8295 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( A  -  ( pi  /  2
) )  e.  RR )
492, 48mpan2 425 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  RR )
506rexri 8089 . . . . . . . . . . 11  |-  pi  e.  RR*
51 elioo2 10001 . . . . . . . . . . 11  |-  ( ( pi  e.  RR*  /\  (
3  x.  ( pi 
/  2 ) )  e.  RR* )  ->  (
( A  -  (
pi  /  2 ) )  e.  ( pi
(,) ( 3  x.  ( pi  /  2
) ) )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  pi  <  ( A  -  ( pi 
/  2 ) )  /\  ( A  -  ( pi  /  2
) )  <  (
3  x.  ( pi 
/  2 ) ) ) ) )
5250, 4, 51mp2an 426 . . . . . . . . . 10  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( pi (,) ( 3  x.  (
pi  /  2 ) ) )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  pi  <  ( A  -  ( pi 
/  2 ) )  /\  ( A  -  ( pi  /  2
) )  <  (
3  x.  ( pi 
/  2 ) ) ) )
53 sincosq3sgn 15111 . . . . . . . . . 10  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( pi (,) ( 3  x.  (
pi  /  2 ) ) )  ->  (
( sin `  ( A  -  ( pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 ) )
5452, 53sylbir 135 . . . . . . . . 9  |-  ( ( ( A  -  (
pi  /  2 ) )  e.  RR  /\  pi  <  ( A  -  ( pi  /  2
) )  /\  ( A  -  ( pi  /  2 ) )  < 
( 3  x.  (
pi  /  2 ) ) )  ->  (
( sin `  ( A  -  ( pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 ) )
5549, 54syl3an1 1282 . . . . . . . 8  |-  ( ( A  e.  RR  /\  pi  <  ( A  -  ( pi  /  2
) )  /\  ( A  -  ( pi  /  2 ) )  < 
( 3  x.  (
pi  /  2 ) ) )  ->  (
( sin `  ( A  -  ( pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 ) )
56553expib 1208 . . . . . . 7  |-  ( A  e.  RR  ->  (
( pi  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  ( 3  x.  ( pi  / 
2 ) ) )  ->  ( ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
5747, 56sylbid 150 . . . . . 6  |-  ( A  e.  RR  ->  (
( ( 3  x.  ( pi  /  2
) )  <  A  /\  A  <  ( 2  x.  pi ) )  ->  ( ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
5849resincld 11893 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( A  -  ( pi  /  2
) ) )  e.  RR )
5958lt0neg1d 8547 . . . . . . 7  |-  ( A  e.  RR  ->  (
( sin `  ( A  -  ( pi  /  2 ) ) )  <  0  <->  0  <  -u ( sin `  ( A  -  ( pi  /  2 ) ) ) ) )
6059anbi1d 465 . . . . . 6  |-  ( A  e.  RR  ->  (
( ( sin `  ( A  -  ( pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 )  <->  ( 0  <  -u ( sin `  ( A  -  ( pi  /  2 ) ) )  /\  ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
6157, 60sylibd 149 . . . . 5  |-  ( A  e.  RR  ->  (
( ( 3  x.  ( pi  /  2
) )  <  A  /\  A  <  ( 2  x.  pi ) )  ->  ( 0  <  -u ( sin `  ( A  -  ( pi  /  2 ) ) )  /\  ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
62 recn 8017 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
63 pncan3 8239 . . . . . . . . . 10  |-  ( ( ( pi  /  2
)  e.  CC  /\  A  e.  CC )  ->  ( ( pi  / 
2 )  +  ( A  -  ( pi 
/  2 ) ) )  =  A )
6415, 62, 63sylancr 414 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( pi  /  2
)  +  ( A  -  ( pi  / 
2 ) ) )  =  A )
6564fveq2d 5565 . . . . . . . 8  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  A
) )
6649recnd 8060 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  CC )
67 coshalfpip 15105 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
6866, 67syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
6965, 68eqtr3d 2231 . . . . . . 7  |-  ( A  e.  RR  ->  ( cos `  A )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
7069breq2d 4046 . . . . . 6  |-  ( A  e.  RR  ->  (
0  <  ( cos `  A )  <->  0  <  -u ( sin `  ( A  -  ( pi  /  2 ) ) ) ) )
7164fveq2d 5565 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( sin `  A
) )
72 sinhalfpip 15103 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
7366, 72syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
7471, 73eqtr3d 2231 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
7574breq1d 4044 . . . . . 6  |-  ( A  e.  RR  ->  (
( sin `  A
)  <  0  <->  ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0
) )
7670, 75anbi12d 473 . . . . 5  |-  ( A  e.  RR  ->  (
( 0  <  ( cos `  A )  /\  ( sin `  A )  <  0 )  <->  ( 0  <  -u ( sin `  ( A  -  ( pi  /  2 ) ) )  /\  ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
7761, 76sylibrd 169 . . . 4  |-  ( A  e.  RR  ->  (
( ( 3  x.  ( pi  /  2
) )  <  A  /\  A  <  ( 2  x.  pi ) )  ->  ( 0  < 
( cos `  A
)  /\  ( sin `  A )  <  0
) ) )
78773impib 1203 . . 3  |-  ( ( A  e.  RR  /\  ( 3  x.  (
pi  /  2 ) )  <  A  /\  A  <  ( 2  x.  pi ) )  -> 
( 0  <  ( cos `  A )  /\  ( sin `  A )  <  0 ) )
7978ancomd 267 . 2  |-  ( ( A  e.  RR  /\  ( 3  x.  (
pi  /  2 ) )  <  A  /\  A  <  ( 2  x.  pi ) )  -> 
( ( sin `  A
)  <  0  /\  0  <  ( cos `  A
) ) )
8010, 79sylbi 121 1  |-  ( A  e.  ( ( 3  x.  ( pi  / 
2 ) ) (,) ( 2  x.  pi ) )  ->  (
( sin `  A
)  <  0  /\  0  <  ( cos `  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7882   RRcr 7883   0cc0 7884   1c1 7885    + caddc 7887    x. cmul 7889   RR*cxr 8065    < clt 8066    - cmin 8202   -ucneg 8203   # cap 8613    / cdiv 8704   2c2 9046   3c3 9047   4c4 9048   (,)cioo 9968   sincsin 11814   cosccos 11815   picpi 11817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7975  ax-resscn 7976  ax-1cn 7977  ax-1re 7978  ax-icn 7979  ax-addcl 7980  ax-addrcl 7981  ax-mulcl 7982  ax-mulrcl 7983  ax-addcom 7984  ax-mulcom 7985  ax-addass 7986  ax-mulass 7987  ax-distr 7988  ax-i2m1 7989  ax-0lt1 7990  ax-1rid 7991  ax-0id 7992  ax-rnegex 7993  ax-precex 7994  ax-cnre 7995  ax-pre-ltirr 7996  ax-pre-ltwlin 7997  ax-pre-lttrn 7998  ax-pre-apti 7999  ax-pre-ltadd 8000  ax-pre-mulgt0 8001  ax-pre-mulext 8002  ax-arch 8003  ax-caucvg 8004  ax-pre-suploc 8005  ax-addf 8006  ax-mulf 8007
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6202  df-2nd 6203  df-recs 6367  df-irdg 6432  df-frec 6453  df-1o 6478  df-oadd 6482  df-er 6596  df-map 6713  df-pm 6714  df-en 6804  df-dom 6805  df-fin 6806  df-sup 7054  df-inf 7055  df-pnf 8068  df-mnf 8069  df-xr 8070  df-ltxr 8071  df-le 8072  df-sub 8204  df-neg 8205  df-reap 8607  df-ap 8614  df-div 8705  df-inn 8996  df-2 9054  df-3 9055  df-4 9056  df-5 9057  df-6 9058  df-7 9059  df-8 9060  df-9 9061  df-n0 9255  df-z 9332  df-uz 9607  df-q 9699  df-rp 9734  df-xneg 9852  df-xadd 9853  df-ioo 9972  df-ioc 9973  df-ico 9974  df-icc 9975  df-fz 10089  df-fzo 10223  df-seqfrec 10545  df-exp 10636  df-fac 10823  df-bc 10845  df-ihash 10873  df-shft 10985  df-cj 11012  df-re 11013  df-im 11014  df-rsqrt 11168  df-abs 11169  df-clim 11449  df-sumdc 11524  df-ef 11818  df-sin 11820  df-cos 11821  df-pi 11823  df-rest 12931  df-topgen 12950  df-psmet 14146  df-xmet 14147  df-met 14148  df-bl 14149  df-mopn 14150  df-top 14281  df-topon 14294  df-bases 14326  df-ntr 14379  df-cn 14471  df-cnp 14472  df-tx 14536  df-cncf 14854  df-limced 14939  df-dvap 14940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator