| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sincosq4sgn | Unicode version | ||
| Description: The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) | 
| Ref | Expression | 
|---|---|
| sincosq4sgn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3re 9064 | 
. . . . 5
 | |
| 2 | halfpire 15028 | 
. . . . 5
 | |
| 3 | 1, 2 | remulcli 8040 | 
. . . 4
 | 
| 4 | 3 | rexri 8084 | 
. . 3
 | 
| 5 | 2re 9060 | 
. . . . 5
 | |
| 6 | pire 15022 | 
. . . . 5
 | |
| 7 | 5, 6 | remulcli 8040 | 
. . . 4
 | 
| 8 | 7 | rexri 8084 | 
. . 3
 | 
| 9 | elioo2 9996 | 
. . 3
 | |
| 10 | 4, 8, 9 | mp2an 426 | 
. 2
 | 
| 11 | df-3 9050 | 
. . . . . . . . . . . 12
 | |
| 12 | 11 | oveq1i 5932 | 
. . . . . . . . . . 11
 | 
| 13 | 2cn 9061 | 
. . . . . . . . . . . 12
 | |
| 14 | ax-1cn 7972 | 
. . . . . . . . . . . 12
 | |
| 15 | 2 | recni 8038 | 
. . . . . . . . . . . 12
 | 
| 16 | 13, 14, 15 | adddiri 8037 | 
. . . . . . . . . . 11
 | 
| 17 | 6 | recni 8038 | 
. . . . . . . . . . . . 13
 | 
| 18 | 2ap0 9083 | 
. . . . . . . . . . . . 13
 | |
| 19 | 17, 13, 18 | divcanap2i 8782 | 
. . . . . . . . . . . 12
 | 
| 20 | 15 | mullidi 8029 | 
. . . . . . . . . . . 12
 | 
| 21 | 19, 20 | oveq12i 5934 | 
. . . . . . . . . . 11
 | 
| 22 | 12, 16, 21 | 3eqtrri 2222 | 
. . . . . . . . . 10
 | 
| 23 | 22 | breq1i 4040 | 
. . . . . . . . 9
 | 
| 24 | ltaddsub 8463 | 
. . . . . . . . . 10
 | |
| 25 | 6, 2, 24 | mp3an12 1338 | 
. . . . . . . . 9
 | 
| 26 | 23, 25 | bitr3id 194 | 
. . . . . . . 8
 | 
| 27 | ltsubadd 8459 | 
. . . . . . . . . 10
 | |
| 28 | 2, 3, 27 | mp3an23 1340 | 
. . . . . . . . 9
 | 
| 29 | df-4 9051 | 
. . . . . . . . . . . . 13
 | |
| 30 | 29 | oveq1i 5932 | 
. . . . . . . . . . . 12
 | 
| 31 | 1 | recni 8038 | 
. . . . . . . . . . . . 13
 | 
| 32 | 31, 14, 15 | adddiri 8037 | 
. . . . . . . . . . . 12
 | 
| 33 | 20 | oveq2i 5933 | 
. . . . . . . . . . . 12
 | 
| 34 | 30, 32, 33 | 3eqtrri 2222 | 
. . . . . . . . . . 11
 | 
| 35 | 4cn 9068 | 
. . . . . . . . . . . . 13
 | |
| 36 | 13, 18 | pm3.2i 272 | 
. . . . . . . . . . . . 13
 | 
| 37 | div12ap 8721 | 
. . . . . . . . . . . . 13
 | |
| 38 | 35, 17, 36, 37 | mp3an 1348 | 
. . . . . . . . . . . 12
 | 
| 39 | 4d2e2 9151 | 
. . . . . . . . . . . . . 14
 | |
| 40 | 39 | oveq2i 5933 | 
. . . . . . . . . . . . 13
 | 
| 41 | 17, 13 | mulcomi 8032 | 
. . . . . . . . . . . . 13
 | 
| 42 | 40, 41 | eqtri 2217 | 
. . . . . . . . . . . 12
 | 
| 43 | 38, 42 | eqtri 2217 | 
. . . . . . . . . . 11
 | 
| 44 | 34, 43 | eqtri 2217 | 
. . . . . . . . . 10
 | 
| 45 | 44 | breq2i 4041 | 
. . . . . . . . 9
 | 
| 46 | 28, 45 | bitr2di 197 | 
. . . . . . . 8
 | 
| 47 | 26, 46 | anbi12d 473 | 
. . . . . . 7
 | 
| 48 | resubcl 8290 | 
. . . . . . . . . 10
 | |
| 49 | 2, 48 | mpan2 425 | 
. . . . . . . . 9
 | 
| 50 | 6 | rexri 8084 | 
. . . . . . . . . . 11
 | 
| 51 | elioo2 9996 | 
. . . . . . . . . . 11
 | |
| 52 | 50, 4, 51 | mp2an 426 | 
. . . . . . . . . 10
 | 
| 53 | sincosq3sgn 15064 | 
. . . . . . . . . 10
 | |
| 54 | 52, 53 | sylbir 135 | 
. . . . . . . . 9
 | 
| 55 | 49, 54 | syl3an1 1282 | 
. . . . . . . 8
 | 
| 56 | 55 | 3expib 1208 | 
. . . . . . 7
 | 
| 57 | 47, 56 | sylbid 150 | 
. . . . . 6
 | 
| 58 | 49 | resincld 11888 | 
. . . . . . . 8
 | 
| 59 | 58 | lt0neg1d 8542 | 
. . . . . . 7
 | 
| 60 | 59 | anbi1d 465 | 
. . . . . 6
 | 
| 61 | 57, 60 | sylibd 149 | 
. . . . 5
 | 
| 62 | recn 8012 | 
. . . . . . . . . 10
 | |
| 63 | pncan3 8234 | 
. . . . . . . . . 10
 | |
| 64 | 15, 62, 63 | sylancr 414 | 
. . . . . . . . 9
 | 
| 65 | 64 | fveq2d 5562 | 
. . . . . . . 8
 | 
| 66 | 49 | recnd 8055 | 
. . . . . . . . 9
 | 
| 67 | coshalfpip 15058 | 
. . . . . . . . 9
 | |
| 68 | 66, 67 | syl 14 | 
. . . . . . . 8
 | 
| 69 | 65, 68 | eqtr3d 2231 | 
. . . . . . 7
 | 
| 70 | 69 | breq2d 4045 | 
. . . . . 6
 | 
| 71 | 64 | fveq2d 5562 | 
. . . . . . . 8
 | 
| 72 | sinhalfpip 15056 | 
. . . . . . . . 9
 | |
| 73 | 66, 72 | syl 14 | 
. . . . . . . 8
 | 
| 74 | 71, 73 | eqtr3d 2231 | 
. . . . . . 7
 | 
| 75 | 74 | breq1d 4043 | 
. . . . . 6
 | 
| 76 | 70, 75 | anbi12d 473 | 
. . . . 5
 | 
| 77 | 61, 76 | sylibrd 169 | 
. . . 4
 | 
| 78 | 77 | 3impib 1203 | 
. . 3
 | 
| 79 | 78 | ancomd 267 | 
. 2
 | 
| 80 | 10, 79 | sylbi 121 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 ax-pre-suploc 8000 ax-addf 8001 ax-mulf 8002 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-map 6709 df-pm 6710 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-ioo 9967 df-ioc 9968 df-ico 9969 df-icc 9970 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-bc 10840 df-ihash 10868 df-shft 10980 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 df-sin 11815 df-cos 11816 df-pi 11818 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-ntr 14332 df-cn 14424 df-cnp 14425 df-tx 14489 df-cncf 14807 df-limced 14892 df-dvap 14893 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |