| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sincosq4sgn | Unicode version | ||
| Description: The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
| Ref | Expression |
|---|---|
| sincosq4sgn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 9069 |
. . . . 5
| |
| 2 | halfpire 15075 |
. . . . 5
| |
| 3 | 1, 2 | remulcli 8045 |
. . . 4
|
| 4 | 3 | rexri 8089 |
. . 3
|
| 5 | 2re 9065 |
. . . . 5
| |
| 6 | pire 15069 |
. . . . 5
| |
| 7 | 5, 6 | remulcli 8045 |
. . . 4
|
| 8 | 7 | rexri 8089 |
. . 3
|
| 9 | elioo2 10001 |
. . 3
| |
| 10 | 4, 8, 9 | mp2an 426 |
. 2
|
| 11 | df-3 9055 |
. . . . . . . . . . . 12
| |
| 12 | 11 | oveq1i 5935 |
. . . . . . . . . . 11
|
| 13 | 2cn 9066 |
. . . . . . . . . . . 12
| |
| 14 | ax-1cn 7977 |
. . . . . . . . . . . 12
| |
| 15 | 2 | recni 8043 |
. . . . . . . . . . . 12
|
| 16 | 13, 14, 15 | adddiri 8042 |
. . . . . . . . . . 11
|
| 17 | 6 | recni 8043 |
. . . . . . . . . . . . 13
|
| 18 | 2ap0 9088 |
. . . . . . . . . . . . 13
| |
| 19 | 17, 13, 18 | divcanap2i 8787 |
. . . . . . . . . . . 12
|
| 20 | 15 | mullidi 8034 |
. . . . . . . . . . . 12
|
| 21 | 19, 20 | oveq12i 5937 |
. . . . . . . . . . 11
|
| 22 | 12, 16, 21 | 3eqtrri 2222 |
. . . . . . . . . 10
|
| 23 | 22 | breq1i 4041 |
. . . . . . . . 9
|
| 24 | ltaddsub 8468 |
. . . . . . . . . 10
| |
| 25 | 6, 2, 24 | mp3an12 1338 |
. . . . . . . . 9
|
| 26 | 23, 25 | bitr3id 194 |
. . . . . . . 8
|
| 27 | ltsubadd 8464 |
. . . . . . . . . 10
| |
| 28 | 2, 3, 27 | mp3an23 1340 |
. . . . . . . . 9
|
| 29 | df-4 9056 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | oveq1i 5935 |
. . . . . . . . . . . 12
|
| 31 | 1 | recni 8043 |
. . . . . . . . . . . . 13
|
| 32 | 31, 14, 15 | adddiri 8042 |
. . . . . . . . . . . 12
|
| 33 | 20 | oveq2i 5936 |
. . . . . . . . . . . 12
|
| 34 | 30, 32, 33 | 3eqtrri 2222 |
. . . . . . . . . . 11
|
| 35 | 4cn 9073 |
. . . . . . . . . . . . 13
| |
| 36 | 13, 18 | pm3.2i 272 |
. . . . . . . . . . . . 13
|
| 37 | div12ap 8726 |
. . . . . . . . . . . . 13
| |
| 38 | 35, 17, 36, 37 | mp3an 1348 |
. . . . . . . . . . . 12
|
| 39 | 4d2e2 9156 |
. . . . . . . . . . . . . 14
| |
| 40 | 39 | oveq2i 5936 |
. . . . . . . . . . . . 13
|
| 41 | 17, 13 | mulcomi 8037 |
. . . . . . . . . . . . 13
|
| 42 | 40, 41 | eqtri 2217 |
. . . . . . . . . . . 12
|
| 43 | 38, 42 | eqtri 2217 |
. . . . . . . . . . 11
|
| 44 | 34, 43 | eqtri 2217 |
. . . . . . . . . 10
|
| 45 | 44 | breq2i 4042 |
. . . . . . . . 9
|
| 46 | 28, 45 | bitr2di 197 |
. . . . . . . 8
|
| 47 | 26, 46 | anbi12d 473 |
. . . . . . 7
|
| 48 | resubcl 8295 |
. . . . . . . . . 10
| |
| 49 | 2, 48 | mpan2 425 |
. . . . . . . . 9
|
| 50 | 6 | rexri 8089 |
. . . . . . . . . . 11
|
| 51 | elioo2 10001 |
. . . . . . . . . . 11
| |
| 52 | 50, 4, 51 | mp2an 426 |
. . . . . . . . . 10
|
| 53 | sincosq3sgn 15111 |
. . . . . . . . . 10
| |
| 54 | 52, 53 | sylbir 135 |
. . . . . . . . 9
|
| 55 | 49, 54 | syl3an1 1282 |
. . . . . . . 8
|
| 56 | 55 | 3expib 1208 |
. . . . . . 7
|
| 57 | 47, 56 | sylbid 150 |
. . . . . 6
|
| 58 | 49 | resincld 11893 |
. . . . . . . 8
|
| 59 | 58 | lt0neg1d 8547 |
. . . . . . 7
|
| 60 | 59 | anbi1d 465 |
. . . . . 6
|
| 61 | 57, 60 | sylibd 149 |
. . . . 5
|
| 62 | recn 8017 |
. . . . . . . . . 10
| |
| 63 | pncan3 8239 |
. . . . . . . . . 10
| |
| 64 | 15, 62, 63 | sylancr 414 |
. . . . . . . . 9
|
| 65 | 64 | fveq2d 5565 |
. . . . . . . 8
|
| 66 | 49 | recnd 8060 |
. . . . . . . . 9
|
| 67 | coshalfpip 15105 |
. . . . . . . . 9
| |
| 68 | 66, 67 | syl 14 |
. . . . . . . 8
|
| 69 | 65, 68 | eqtr3d 2231 |
. . . . . . 7
|
| 70 | 69 | breq2d 4046 |
. . . . . 6
|
| 71 | 64 | fveq2d 5565 |
. . . . . . . 8
|
| 72 | sinhalfpip 15103 |
. . . . . . . . 9
| |
| 73 | 66, 72 | syl 14 |
. . . . . . . 8
|
| 74 | 71, 73 | eqtr3d 2231 |
. . . . . . 7
|
| 75 | 74 | breq1d 4044 |
. . . . . 6
|
| 76 | 70, 75 | anbi12d 473 |
. . . . 5
|
| 77 | 61, 76 | sylibrd 169 |
. . . 4
|
| 78 | 77 | 3impib 1203 |
. . 3
|
| 79 | 78 | ancomd 267 |
. 2
|
| 80 | 10, 79 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7975 ax-resscn 7976 ax-1cn 7977 ax-1re 7978 ax-icn 7979 ax-addcl 7980 ax-addrcl 7981 ax-mulcl 7982 ax-mulrcl 7983 ax-addcom 7984 ax-mulcom 7985 ax-addass 7986 ax-mulass 7987 ax-distr 7988 ax-i2m1 7989 ax-0lt1 7990 ax-1rid 7991 ax-0id 7992 ax-rnegex 7993 ax-precex 7994 ax-cnre 7995 ax-pre-ltirr 7996 ax-pre-ltwlin 7997 ax-pre-lttrn 7998 ax-pre-apti 7999 ax-pre-ltadd 8000 ax-pre-mulgt0 8001 ax-pre-mulext 8002 ax-arch 8003 ax-caucvg 8004 ax-pre-suploc 8005 ax-addf 8006 ax-mulf 8007 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6202 df-2nd 6203 df-recs 6367 df-irdg 6432 df-frec 6453 df-1o 6478 df-oadd 6482 df-er 6596 df-map 6713 df-pm 6714 df-en 6804 df-dom 6805 df-fin 6806 df-sup 7054 df-inf 7055 df-pnf 8068 df-mnf 8069 df-xr 8070 df-ltxr 8071 df-le 8072 df-sub 8204 df-neg 8205 df-reap 8607 df-ap 8614 df-div 8705 df-inn 8996 df-2 9054 df-3 9055 df-4 9056 df-5 9057 df-6 9058 df-7 9059 df-8 9060 df-9 9061 df-n0 9255 df-z 9332 df-uz 9607 df-q 9699 df-rp 9734 df-xneg 9852 df-xadd 9853 df-ioo 9972 df-ioc 9973 df-ico 9974 df-icc 9975 df-fz 10089 df-fzo 10223 df-seqfrec 10545 df-exp 10636 df-fac 10823 df-bc 10845 df-ihash 10873 df-shft 10985 df-cj 11012 df-re 11013 df-im 11014 df-rsqrt 11168 df-abs 11169 df-clim 11449 df-sumdc 11524 df-ef 11818 df-sin 11820 df-cos 11821 df-pi 11823 df-rest 12931 df-topgen 12950 df-psmet 14146 df-xmet 14147 df-met 14148 df-bl 14149 df-mopn 14150 df-top 14281 df-topon 14294 df-bases 14326 df-ntr 14379 df-cn 14471 df-cnp 14472 df-tx 14536 df-cncf 14854 df-limced 14939 df-dvap 14940 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |