ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincosq4sgn Unicode version

Theorem sincosq4sgn 13390
Description: The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq4sgn  |-  ( A  e.  ( ( 3  x.  ( pi  / 
2 ) ) (,) ( 2  x.  pi ) )  ->  (
( sin `  A
)  <  0  /\  0  <  ( cos `  A
) ) )

Proof of Theorem sincosq4sgn
StepHypRef Expression
1 3re 8931 . . . . 5  |-  3  e.  RR
2 halfpire 13353 . . . . 5  |-  ( pi 
/  2 )  e.  RR
31, 2remulcli 7913 . . . 4  |-  ( 3  x.  ( pi  / 
2 ) )  e.  RR
43rexri 7956 . . 3  |-  ( 3  x.  ( pi  / 
2 ) )  e. 
RR*
5 2re 8927 . . . . 5  |-  2  e.  RR
6 pire 13347 . . . . 5  |-  pi  e.  RR
75, 6remulcli 7913 . . . 4  |-  ( 2  x.  pi )  e.  RR
87rexri 7956 . . 3  |-  ( 2  x.  pi )  e. 
RR*
9 elioo2 9857 . . 3  |-  ( ( ( 3  x.  (
pi  /  2 ) )  e.  RR*  /\  (
2  x.  pi )  e.  RR* )  ->  ( A  e.  ( (
3  x.  ( pi 
/  2 ) ) (,) ( 2  x.  pi ) )  <->  ( A  e.  RR  /\  ( 3  x.  ( pi  / 
2 ) )  < 
A  /\  A  <  ( 2  x.  pi ) ) ) )
104, 8, 9mp2an 423 . 2  |-  ( A  e.  ( ( 3  x.  ( pi  / 
2 ) ) (,) ( 2  x.  pi ) )  <->  ( A  e.  RR  /\  ( 3  x.  ( pi  / 
2 ) )  < 
A  /\  A  <  ( 2  x.  pi ) ) )
11 df-3 8917 . . . . . . . . . . . 12  |-  3  =  ( 2  +  1 )
1211oveq1i 5852 . . . . . . . . . . 11  |-  ( 3  x.  ( pi  / 
2 ) )  =  ( ( 2  +  1 )  x.  (
pi  /  2 ) )
13 2cn 8928 . . . . . . . . . . . 12  |-  2  e.  CC
14 ax-1cn 7846 . . . . . . . . . . . 12  |-  1  e.  CC
152recni 7911 . . . . . . . . . . . 12  |-  ( pi 
/  2 )  e.  CC
1613, 14, 15adddiri 7910 . . . . . . . . . . 11  |-  ( ( 2  +  1 )  x.  ( pi  / 
2 ) )  =  ( ( 2  x.  ( pi  /  2
) )  +  ( 1  x.  ( pi 
/  2 ) ) )
176recni 7911 . . . . . . . . . . . . 13  |-  pi  e.  CC
18 2ap0 8950 . . . . . . . . . . . . 13  |-  2 #  0
1917, 13, 18divcanap2i 8651 . . . . . . . . . . . 12  |-  ( 2  x.  ( pi  / 
2 ) )  =  pi
2015mulid2i 7902 . . . . . . . . . . . 12  |-  ( 1  x.  ( pi  / 
2 ) )  =  ( pi  /  2
)
2119, 20oveq12i 5854 . . . . . . . . . . 11  |-  ( ( 2  x.  ( pi 
/  2 ) )  +  ( 1  x.  ( pi  /  2
) ) )  =  ( pi  +  ( pi  /  2 ) )
2212, 16, 213eqtrri 2191 . . . . . . . . . 10  |-  ( pi  +  ( pi  / 
2 ) )  =  ( 3  x.  (
pi  /  2 ) )
2322breq1i 3989 . . . . . . . . 9  |-  ( ( pi  +  ( pi 
/  2 ) )  <  A  <->  ( 3  x.  ( pi  / 
2 ) )  < 
A )
24 ltaddsub 8334 . . . . . . . . . 10  |-  ( ( pi  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  A  e.  RR )  ->  ( ( pi  +  ( pi  /  2
) )  <  A  <->  pi 
<  ( A  -  ( pi  /  2
) ) ) )
256, 2, 24mp3an12 1317 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( pi  +  ( pi  /  2 ) )  <  A  <->  pi  <  ( A  -  ( pi 
/  2 ) ) ) )
2623, 25bitr3id 193 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( 3  x.  (
pi  /  2 ) )  <  A  <->  pi  <  ( A  -  ( pi 
/  2 ) ) ) )
27 ltsubadd 8330 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  ( 3  x.  (
pi  /  2 ) )  e.  RR )  ->  ( ( A  -  ( pi  / 
2 ) )  < 
( 3  x.  (
pi  /  2 ) )  <->  A  <  ( ( 3  x.  ( pi 
/  2 ) )  +  ( pi  / 
2 ) ) ) )
282, 3, 27mp3an23 1319 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( A  -  (
pi  /  2 ) )  <  ( 3  x.  ( pi  / 
2 ) )  <->  A  <  ( ( 3  x.  (
pi  /  2 ) )  +  ( pi 
/  2 ) ) ) )
29 df-4 8918 . . . . . . . . . . . . 13  |-  4  =  ( 3  +  1 )
3029oveq1i 5852 . . . . . . . . . . . 12  |-  ( 4  x.  ( pi  / 
2 ) )  =  ( ( 3  +  1 )  x.  (
pi  /  2 ) )
311recni 7911 . . . . . . . . . . . . 13  |-  3  e.  CC
3231, 14, 15adddiri 7910 . . . . . . . . . . . 12  |-  ( ( 3  +  1 )  x.  ( pi  / 
2 ) )  =  ( ( 3  x.  ( pi  /  2
) )  +  ( 1  x.  ( pi 
/  2 ) ) )
3320oveq2i 5853 . . . . . . . . . . . 12  |-  ( ( 3  x.  ( pi 
/  2 ) )  +  ( 1  x.  ( pi  /  2
) ) )  =  ( ( 3  x.  ( pi  /  2
) )  +  ( pi  /  2 ) )
3430, 32, 333eqtrri 2191 . . . . . . . . . . 11  |-  ( ( 3  x.  ( pi 
/  2 ) )  +  ( pi  / 
2 ) )  =  ( 4  x.  (
pi  /  2 ) )
35 4cn 8935 . . . . . . . . . . . . 13  |-  4  e.  CC
3613, 18pm3.2i 270 . . . . . . . . . . . . 13  |-  ( 2  e.  CC  /\  2 #  0 )
37 div12ap 8590 . . . . . . . . . . . . 13  |-  ( ( 4  e.  CC  /\  pi  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( 4  x.  (
pi  /  2 ) )  =  ( pi  x.  ( 4  / 
2 ) ) )
3835, 17, 36, 37mp3an 1327 . . . . . . . . . . . 12  |-  ( 4  x.  ( pi  / 
2 ) )  =  ( pi  x.  (
4  /  2 ) )
39 4d2e2 9017 . . . . . . . . . . . . . 14  |-  ( 4  /  2 )  =  2
4039oveq2i 5853 . . . . . . . . . . . . 13  |-  ( pi  x.  ( 4  / 
2 ) )  =  ( pi  x.  2 )
4117, 13mulcomi 7905 . . . . . . . . . . . . 13  |-  ( pi  x.  2 )  =  ( 2  x.  pi )
4240, 41eqtri 2186 . . . . . . . . . . . 12  |-  ( pi  x.  ( 4  / 
2 ) )  =  ( 2  x.  pi )
4338, 42eqtri 2186 . . . . . . . . . . 11  |-  ( 4  x.  ( pi  / 
2 ) )  =  ( 2  x.  pi )
4434, 43eqtri 2186 . . . . . . . . . 10  |-  ( ( 3  x.  ( pi 
/  2 ) )  +  ( pi  / 
2 ) )  =  ( 2  x.  pi )
4544breq2i 3990 . . . . . . . . 9  |-  ( A  <  ( ( 3  x.  ( pi  / 
2 ) )  +  ( pi  /  2
) )  <->  A  <  ( 2  x.  pi ) )
4628, 45bitr2di 196 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  <  ( 2  x.  pi )  <->  ( A  -  ( pi  / 
2 ) )  < 
( 3  x.  (
pi  /  2 ) ) ) )
4726, 46anbi12d 465 . . . . . . 7  |-  ( A  e.  RR  ->  (
( ( 3  x.  ( pi  /  2
) )  <  A  /\  A  <  ( 2  x.  pi ) )  <-> 
( pi  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  ( 3  x.  ( pi  / 
2 ) ) ) ) )
48 resubcl 8162 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( A  -  ( pi  /  2
) )  e.  RR )
492, 48mpan2 422 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  RR )
506rexri 7956 . . . . . . . . . . 11  |-  pi  e.  RR*
51 elioo2 9857 . . . . . . . . . . 11  |-  ( ( pi  e.  RR*  /\  (
3  x.  ( pi 
/  2 ) )  e.  RR* )  ->  (
( A  -  (
pi  /  2 ) )  e.  ( pi
(,) ( 3  x.  ( pi  /  2
) ) )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  pi  <  ( A  -  ( pi 
/  2 ) )  /\  ( A  -  ( pi  /  2
) )  <  (
3  x.  ( pi 
/  2 ) ) ) ) )
5250, 4, 51mp2an 423 . . . . . . . . . 10  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( pi (,) ( 3  x.  (
pi  /  2 ) ) )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  pi  <  ( A  -  ( pi 
/  2 ) )  /\  ( A  -  ( pi  /  2
) )  <  (
3  x.  ( pi 
/  2 ) ) ) )
53 sincosq3sgn 13389 . . . . . . . . . 10  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( pi (,) ( 3  x.  (
pi  /  2 ) ) )  ->  (
( sin `  ( A  -  ( pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 ) )
5452, 53sylbir 134 . . . . . . . . 9  |-  ( ( ( A  -  (
pi  /  2 ) )  e.  RR  /\  pi  <  ( A  -  ( pi  /  2
) )  /\  ( A  -  ( pi  /  2 ) )  < 
( 3  x.  (
pi  /  2 ) ) )  ->  (
( sin `  ( A  -  ( pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 ) )
5549, 54syl3an1 1261 . . . . . . . 8  |-  ( ( A  e.  RR  /\  pi  <  ( A  -  ( pi  /  2
) )  /\  ( A  -  ( pi  /  2 ) )  < 
( 3  x.  (
pi  /  2 ) ) )  ->  (
( sin `  ( A  -  ( pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 ) )
56553expib 1196 . . . . . . 7  |-  ( A  e.  RR  ->  (
( pi  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  ( 3  x.  ( pi  / 
2 ) ) )  ->  ( ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
5747, 56sylbid 149 . . . . . 6  |-  ( A  e.  RR  ->  (
( ( 3  x.  ( pi  /  2
) )  <  A  /\  A  <  ( 2  x.  pi ) )  ->  ( ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
5849resincld 11664 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( A  -  ( pi  /  2
) ) )  e.  RR )
5958lt0neg1d 8413 . . . . . . 7  |-  ( A  e.  RR  ->  (
( sin `  ( A  -  ( pi  /  2 ) ) )  <  0  <->  0  <  -u ( sin `  ( A  -  ( pi  /  2 ) ) ) ) )
6059anbi1d 461 . . . . . 6  |-  ( A  e.  RR  ->  (
( ( sin `  ( A  -  ( pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 )  <->  ( 0  <  -u ( sin `  ( A  -  ( pi  /  2 ) ) )  /\  ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
6157, 60sylibd 148 . . . . 5  |-  ( A  e.  RR  ->  (
( ( 3  x.  ( pi  /  2
) )  <  A  /\  A  <  ( 2  x.  pi ) )  ->  ( 0  <  -u ( sin `  ( A  -  ( pi  /  2 ) ) )  /\  ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
62 recn 7886 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
63 pncan3 8106 . . . . . . . . . 10  |-  ( ( ( pi  /  2
)  e.  CC  /\  A  e.  CC )  ->  ( ( pi  / 
2 )  +  ( A  -  ( pi 
/  2 ) ) )  =  A )
6415, 62, 63sylancr 411 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( pi  /  2
)  +  ( A  -  ( pi  / 
2 ) ) )  =  A )
6564fveq2d 5490 . . . . . . . 8  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  A
) )
6649recnd 7927 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  CC )
67 coshalfpip 13383 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
6866, 67syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
6965, 68eqtr3d 2200 . . . . . . 7  |-  ( A  e.  RR  ->  ( cos `  A )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
7069breq2d 3994 . . . . . 6  |-  ( A  e.  RR  ->  (
0  <  ( cos `  A )  <->  0  <  -u ( sin `  ( A  -  ( pi  /  2 ) ) ) ) )
7164fveq2d 5490 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( sin `  A
) )
72 sinhalfpip 13381 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
7366, 72syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
7471, 73eqtr3d 2200 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
7574breq1d 3992 . . . . . 6  |-  ( A  e.  RR  ->  (
( sin `  A
)  <  0  <->  ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0
) )
7670, 75anbi12d 465 . . . . 5  |-  ( A  e.  RR  ->  (
( 0  <  ( cos `  A )  /\  ( sin `  A )  <  0 )  <->  ( 0  <  -u ( sin `  ( A  -  ( pi  /  2 ) ) )  /\  ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
7761, 76sylibrd 168 . . . 4  |-  ( A  e.  RR  ->  (
( ( 3  x.  ( pi  /  2
) )  <  A  /\  A  <  ( 2  x.  pi ) )  ->  ( 0  < 
( cos `  A
)  /\  ( sin `  A )  <  0
) ) )
78773impib 1191 . . 3  |-  ( ( A  e.  RR  /\  ( 3  x.  (
pi  /  2 ) )  <  A  /\  A  <  ( 2  x.  pi ) )  -> 
( 0  <  ( cos `  A )  /\  ( sin `  A )  <  0 ) )
7978ancomd 265 . 2  |-  ( ( A  e.  RR  /\  ( 3  x.  (
pi  /  2 ) )  <  A  /\  A  <  ( 2  x.  pi ) )  -> 
( ( sin `  A
)  <  0  /\  0  <  ( cos `  A
) ) )
8010, 79sylbi 120 1  |-  ( A  e.  ( ( 3  x.  ( pi  / 
2 ) ) (,) ( 2  x.  pi ) )  ->  (
( sin `  A
)  <  0  /\  0  <  ( cos `  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758   RR*cxr 7932    < clt 7933    - cmin 8069   -ucneg 8070   # cap 8479    / cdiv 8568   2c2 8908   3c3 8909   4c4 8910   (,)cioo 9824   sincsin 11585   cosccos 11586   picpi 11588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-pre-suploc 7874  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-map 6616  df-pm 6617  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-ioc 9829  df-ico 9830  df-icc 9831  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-sin 11591  df-cos 11592  df-pi 11594  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-tx 12893  df-cncf 13198  df-limced 13265  df-dvap 13266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator