ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elznn0 Unicode version

Theorem elznn0 9461
Description: Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
elznn0  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )

Proof of Theorem elznn0
StepHypRef Expression
1 elz 9448 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
2 elnn0 9371 . . . . . 6  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
32a1i 9 . . . . 5  |-  ( N  e.  RR  ->  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) ) )
4 elnn0 9371 . . . . . 6  |-  ( -u N  e.  NN0  <->  ( -u N  e.  NN  \/  -u N  =  0 ) )
5 recn 8132 . . . . . . . . 9  |-  ( N  e.  RR  ->  N  e.  CC )
6 0cn 8138 . . . . . . . . 9  |-  0  e.  CC
7 negcon1 8398 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  0  e.  CC )  ->  ( -u N  =  0  <->  -u 0  =  N ) )
85, 6, 7sylancl 413 . . . . . . . 8  |-  ( N  e.  RR  ->  ( -u N  =  0  <->  -u 0  =  N ) )
9 neg0 8392 . . . . . . . . . 10  |-  -u 0  =  0
109eqeq1i 2237 . . . . . . . . 9  |-  ( -u
0  =  N  <->  0  =  N )
11 eqcom 2231 . . . . . . . . 9  |-  ( 0  =  N  <->  N  = 
0 )
1210, 11bitri 184 . . . . . . . 8  |-  ( -u
0  =  N  <->  N  = 
0 )
138, 12bitrdi 196 . . . . . . 7  |-  ( N  e.  RR  ->  ( -u N  =  0  <->  N  =  0 ) )
1413orbi2d 795 . . . . . 6  |-  ( N  e.  RR  ->  (
( -u N  e.  NN  \/  -u N  =  0 )  <->  ( -u N  e.  NN  \/  N  =  0 ) ) )
154, 14bitrid 192 . . . . 5  |-  ( N  e.  RR  ->  ( -u N  e.  NN0  <->  ( -u N  e.  NN  \/  N  =  0 ) ) )
163, 15orbi12d 798 . . . 4  |-  ( N  e.  RR  ->  (
( N  e.  NN0  \/  -u N  e.  NN0 ) 
<->  ( ( N  e.  NN  \/  N  =  0 )  \/  ( -u N  e.  NN  \/  N  =  0 ) ) ) )
17 3orass 1005 . . . . 5  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( N  =  0  \/  ( N  e.  NN  \/  -u N  e.  NN ) ) )
18 orcom 733 . . . . 5  |-  ( ( N  =  0  \/  ( N  e.  NN  \/  -u N  e.  NN ) )  <->  ( ( N  e.  NN  \/  -u N  e.  NN )  \/  N  =  0 ) )
19 orordir 779 . . . . 5  |-  ( ( ( N  e.  NN  \/  -u N  e.  NN )  \/  N  = 
0 )  <->  ( ( N  e.  NN  \/  N  =  0 )  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )
2017, 18, 193bitrri 207 . . . 4  |-  ( ( ( N  e.  NN  \/  N  =  0
)  \/  ( -u N  e.  NN  \/  N  =  0 ) )  <->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
2116, 20bitr2di 197 . . 3  |-  ( N  e.  RR  ->  (
( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) 
<->  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
2221pm5.32i 454 . 2  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
231, 22bitri 184 1  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 713    \/ w3o 1001    = wceq 1395    e. wcel 2200   CCcc 7997   RRcr 7998   0cc0 7999   -ucneg 8318   NNcn 9110   NN0cn0 9369   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319  df-neg 8320  df-n0 9370  df-z 9447
This theorem is referenced by:  peano2z  9482  zmulcl  9500  elz2  9518  expnegzap  10795  expaddzaplem  10804  odd2np1  12384  bezoutlemzz  12523  bezoutlemaz  12524  bezoutlembz  12525  mulgz  13687  mulgdirlem  13690  mulgdir  13691  mulgass  13696
  Copyright terms: Public domain W3C validator