| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elznn0 | Unicode version | ||
| Description: Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| elznn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9448 |
. 2
| |
| 2 | elnn0 9371 |
. . . . . 6
| |
| 3 | 2 | a1i 9 |
. . . . 5
|
| 4 | elnn0 9371 |
. . . . . 6
| |
| 5 | recn 8132 |
. . . . . . . . 9
| |
| 6 | 0cn 8138 |
. . . . . . . . 9
| |
| 7 | negcon1 8398 |
. . . . . . . . 9
| |
| 8 | 5, 6, 7 | sylancl 413 |
. . . . . . . 8
|
| 9 | neg0 8392 |
. . . . . . . . . 10
| |
| 10 | 9 | eqeq1i 2237 |
. . . . . . . . 9
|
| 11 | eqcom 2231 |
. . . . . . . . 9
| |
| 12 | 10, 11 | bitri 184 |
. . . . . . . 8
|
| 13 | 8, 12 | bitrdi 196 |
. . . . . . 7
|
| 14 | 13 | orbi2d 795 |
. . . . . 6
|
| 15 | 4, 14 | bitrid 192 |
. . . . 5
|
| 16 | 3, 15 | orbi12d 798 |
. . . 4
|
| 17 | 3orass 1005 |
. . . . 5
| |
| 18 | orcom 733 |
. . . . 5
| |
| 19 | orordir 779 |
. . . . 5
| |
| 20 | 17, 18, 19 | 3bitrri 207 |
. . . 4
|
| 21 | 16, 20 | bitr2di 197 |
. . 3
|
| 22 | 21 | pm5.32i 454 |
. 2
|
| 23 | 1, 22 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-neg 8320 df-n0 9370 df-z 9447 |
| This theorem is referenced by: peano2z 9482 zmulcl 9500 elz2 9518 expnegzap 10795 expaddzaplem 10804 odd2np1 12384 bezoutlemzz 12523 bezoutlemaz 12524 bezoutlembz 12525 mulgz 13687 mulgdirlem 13690 mulgdir 13691 mulgass 13696 |
| Copyright terms: Public domain | W3C validator |