ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elznn0 Unicode version

Theorem elznn0 8819
Description: Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
elznn0  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )

Proof of Theorem elznn0
StepHypRef Expression
1 elz 8806 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
2 elnn0 8729 . . . . . 6  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
32a1i 9 . . . . 5  |-  ( N  e.  RR  ->  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) ) )
4 elnn0 8729 . . . . . 6  |-  ( -u N  e.  NN0  <->  ( -u N  e.  NN  \/  -u N  =  0 ) )
5 recn 7529 . . . . . . . . 9  |-  ( N  e.  RR  ->  N  e.  CC )
6 0cn 7534 . . . . . . . . 9  |-  0  e.  CC
7 negcon1 7788 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  0  e.  CC )  ->  ( -u N  =  0  <->  -u 0  =  N ) )
85, 6, 7sylancl 405 . . . . . . . 8  |-  ( N  e.  RR  ->  ( -u N  =  0  <->  -u 0  =  N ) )
9 neg0 7782 . . . . . . . . . 10  |-  -u 0  =  0
109eqeq1i 2096 . . . . . . . . 9  |-  ( -u
0  =  N  <->  0  =  N )
11 eqcom 2091 . . . . . . . . 9  |-  ( 0  =  N  <->  N  = 
0 )
1210, 11bitri 183 . . . . . . . 8  |-  ( -u
0  =  N  <->  N  = 
0 )
138, 12syl6bb 195 . . . . . . 7  |-  ( N  e.  RR  ->  ( -u N  =  0  <->  N  =  0 ) )
1413orbi2d 740 . . . . . 6  |-  ( N  e.  RR  ->  (
( -u N  e.  NN  \/  -u N  =  0 )  <->  ( -u N  e.  NN  \/  N  =  0 ) ) )
154, 14syl5bb 191 . . . . 5  |-  ( N  e.  RR  ->  ( -u N  e.  NN0  <->  ( -u N  e.  NN  \/  N  =  0 ) ) )
163, 15orbi12d 743 . . . 4  |-  ( N  e.  RR  ->  (
( N  e.  NN0  \/  -u N  e.  NN0 ) 
<->  ( ( N  e.  NN  \/  N  =  0 )  \/  ( -u N  e.  NN  \/  N  =  0 ) ) ) )
17 3orass 928 . . . . 5  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( N  =  0  \/  ( N  e.  NN  \/  -u N  e.  NN ) ) )
18 orcom 683 . . . . 5  |-  ( ( N  =  0  \/  ( N  e.  NN  \/  -u N  e.  NN ) )  <->  ( ( N  e.  NN  \/  -u N  e.  NN )  \/  N  =  0 ) )
19 orordir 727 . . . . 5  |-  ( ( ( N  e.  NN  \/  -u N  e.  NN )  \/  N  = 
0 )  <->  ( ( N  e.  NN  \/  N  =  0 )  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )
2017, 18, 193bitrri 206 . . . 4  |-  ( ( ( N  e.  NN  \/  N  =  0
)  \/  ( -u N  e.  NN  \/  N  =  0 ) )  <->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
2116, 20syl6rbb 196 . . 3  |-  ( N  e.  RR  ->  (
( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) 
<->  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
2221pm5.32i 443 . 2  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
231, 22bitri 183 1  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ wo 665    \/ w3o 924    = wceq 1290    e. wcel 1439   CCcc 7402   RRcr 7403   0cc0 7404   -ucneg 7708   NNcn 8476   NN0cn0 8727   ZZcz 8804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-setind 4366  ax-resscn 7491  ax-1cn 7492  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-addcom 7499  ax-addass 7501  ax-distr 7503  ax-i2m1 7504  ax-0id 7507  ax-rnegex 7508  ax-cnre 7510
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-iota 4993  df-fun 5030  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-sub 7709  df-neg 7710  df-n0 8728  df-z 8805
This theorem is referenced by:  peano2z  8840  zmulcl  8857  elz2  8872  expnegzap  10043  expaddzaplem  10052  odd2np1  11205  bezoutlemzz  11323  bezoutlemaz  11324  bezoutlembz  11325
  Copyright terms: Public domain W3C validator