Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elznn0 | Unicode version |
Description: Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
elznn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 9193 | . 2 | |
2 | elnn0 9116 | . . . . . 6 | |
3 | 2 | a1i 9 | . . . . 5 |
4 | elnn0 9116 | . . . . . 6 | |
5 | recn 7886 | . . . . . . . . 9 | |
6 | 0cn 7891 | . . . . . . . . 9 | |
7 | negcon1 8150 | . . . . . . . . 9 | |
8 | 5, 6, 7 | sylancl 410 | . . . . . . . 8 |
9 | neg0 8144 | . . . . . . . . . 10 | |
10 | 9 | eqeq1i 2173 | . . . . . . . . 9 |
11 | eqcom 2167 | . . . . . . . . 9 | |
12 | 10, 11 | bitri 183 | . . . . . . . 8 |
13 | 8, 12 | bitrdi 195 | . . . . . . 7 |
14 | 13 | orbi2d 780 | . . . . . 6 |
15 | 4, 14 | syl5bb 191 | . . . . 5 |
16 | 3, 15 | orbi12d 783 | . . . 4 |
17 | 3orass 971 | . . . . 5 | |
18 | orcom 718 | . . . . 5 | |
19 | orordir 764 | . . . . 5 | |
20 | 17, 18, 19 | 3bitrri 206 | . . . 4 |
21 | 16, 20 | bitr2di 196 | . . 3 |
22 | 21 | pm5.32i 450 | . 2 |
23 | 1, 22 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wo 698 w3o 967 wceq 1343 wcel 2136 cc 7751 cr 7752 cc0 7753 cneg 8070 cn 8857 cn0 9114 cz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-neg 8072 df-n0 9115 df-z 9192 |
This theorem is referenced by: peano2z 9227 zmulcl 9244 elz2 9262 expnegzap 10489 expaddzaplem 10498 odd2np1 11810 bezoutlemzz 11935 bezoutlemaz 11936 bezoutlembz 11937 |
Copyright terms: Public domain | W3C validator |