ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcom Unicode version

Theorem xpcom 5080
Description: Composition of two cross products. (Contributed by Jim Kingdon, 20-Dec-2018.)
Assertion
Ref Expression
xpcom  |-  ( E. x  x  e.  B  ->  ( ( B  X.  C )  o.  ( A  X.  B ) )  =  ( A  X.  C ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem xpcom
Dummy variables  a  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ibar 299 . . . 4  |-  ( E. x  x  e.  B  ->  ( ( a  e.  A  /\  c  e.  C )  <->  ( E. x  x  e.  B  /\  ( a  e.  A  /\  c  e.  C
) ) ) )
2 ancom 264 . . . . . . . 8  |-  ( ( a  e.  A  /\  x  e.  B )  <->  ( x  e.  B  /\  a  e.  A )
)
32anbi1i 453 . . . . . . 7  |-  ( ( ( a  e.  A  /\  x  e.  B
)  /\  ( x  e.  B  /\  c  e.  C ) )  <->  ( (
x  e.  B  /\  a  e.  A )  /\  ( x  e.  B  /\  c  e.  C
) ) )
4 brxp 4565 . . . . . . . 8  |-  ( a ( A  X.  B
) x  <->  ( a  e.  A  /\  x  e.  B ) )
5 brxp 4565 . . . . . . . 8  |-  ( x ( B  X.  C
) c  <->  ( x  e.  B  /\  c  e.  C ) )
64, 5anbi12i 455 . . . . . . 7  |-  ( ( a ( A  X.  B ) x  /\  x ( B  X.  C ) c )  <-> 
( ( a  e.  A  /\  x  e.  B )  /\  (
x  e.  B  /\  c  e.  C )
) )
7 anandi 579 . . . . . . 7  |-  ( ( x  e.  B  /\  ( a  e.  A  /\  c  e.  C
) )  <->  ( (
x  e.  B  /\  a  e.  A )  /\  ( x  e.  B  /\  c  e.  C
) ) )
83, 6, 73bitr4i 211 . . . . . 6  |-  ( ( a ( A  X.  B ) x  /\  x ( B  X.  C ) c )  <-> 
( x  e.  B  /\  ( a  e.  A  /\  c  e.  C
) ) )
98exbii 1584 . . . . 5  |-  ( E. x ( a ( A  X.  B ) x  /\  x ( B  X.  C ) c )  <->  E. x
( x  e.  B  /\  ( a  e.  A  /\  c  e.  C
) ) )
10 19.41v 1874 . . . . 5  |-  ( E. x ( x  e.  B  /\  ( a  e.  A  /\  c  e.  C ) )  <->  ( E. x  x  e.  B  /\  ( a  e.  A  /\  c  e.  C
) ) )
119, 10bitr2i 184 . . . 4  |-  ( ( E. x  x  e.  B  /\  ( a  e.  A  /\  c  e.  C ) )  <->  E. x
( a ( A  X.  B ) x  /\  x ( B  X.  C ) c ) )
121, 11syl6rbb 196 . . 3  |-  ( E. x  x  e.  B  ->  ( E. x ( a ( A  X.  B ) x  /\  x ( B  X.  C ) c )  <-> 
( a  e.  A  /\  c  e.  C
) ) )
1312opabbidv 3989 . 2  |-  ( E. x  x  e.  B  ->  { <. a ,  c
>.  |  E. x
( a ( A  X.  B ) x  /\  x ( B  X.  C ) c ) }  =  { <. a ,  c >.  |  ( a  e.  A  /\  c  e.  C ) } )
14 df-co 4543 . 2  |-  ( ( B  X.  C )  o.  ( A  X.  B ) )  =  { <. a ,  c
>.  |  E. x
( a ( A  X.  B ) x  /\  x ( B  X.  C ) c ) }
15 df-xp 4540 . 2  |-  ( A  X.  C )  =  { <. a ,  c
>.  |  ( a  e.  A  /\  c  e.  C ) }
1613, 14, 153eqtr4g 2195 1  |-  ( E. x  x  e.  B  ->  ( ( B  X.  C )  o.  ( A  X.  B ) )  =  ( A  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480   class class class wbr 3924   {copab 3983    X. cxp 4532    o. ccom 4538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-xp 4540  df-co 4543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator