ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcom Unicode version

Theorem xpcom 5041
Description: Composition of two cross products. (Contributed by Jim Kingdon, 20-Dec-2018.)
Assertion
Ref Expression
xpcom  |-  ( E. x  x  e.  B  ->  ( ( B  X.  C )  o.  ( A  X.  B ) )  =  ( A  X.  C ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem xpcom
Dummy variables  a  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ibar 297 . . . 4  |-  ( E. x  x  e.  B  ->  ( ( a  e.  A  /\  c  e.  C )  <->  ( E. x  x  e.  B  /\  ( a  e.  A  /\  c  e.  C
) ) ) )
2 ancom 264 . . . . . . . 8  |-  ( ( a  e.  A  /\  x  e.  B )  <->  ( x  e.  B  /\  a  e.  A )
)
32anbi1i 451 . . . . . . 7  |-  ( ( ( a  e.  A  /\  x  e.  B
)  /\  ( x  e.  B  /\  c  e.  C ) )  <->  ( (
x  e.  B  /\  a  e.  A )  /\  ( x  e.  B  /\  c  e.  C
) ) )
4 brxp 4528 . . . . . . . 8  |-  ( a ( A  X.  B
) x  <->  ( a  e.  A  /\  x  e.  B ) )
5 brxp 4528 . . . . . . . 8  |-  ( x ( B  X.  C
) c  <->  ( x  e.  B  /\  c  e.  C ) )
64, 5anbi12i 453 . . . . . . 7  |-  ( ( a ( A  X.  B ) x  /\  x ( B  X.  C ) c )  <-> 
( ( a  e.  A  /\  x  e.  B )  /\  (
x  e.  B  /\  c  e.  C )
) )
7 anandi 562 . . . . . . 7  |-  ( ( x  e.  B  /\  ( a  e.  A  /\  c  e.  C
) )  <->  ( (
x  e.  B  /\  a  e.  A )  /\  ( x  e.  B  /\  c  e.  C
) ) )
83, 6, 73bitr4i 211 . . . . . 6  |-  ( ( a ( A  X.  B ) x  /\  x ( B  X.  C ) c )  <-> 
( x  e.  B  /\  ( a  e.  A  /\  c  e.  C
) ) )
98exbii 1565 . . . . 5  |-  ( E. x ( a ( A  X.  B ) x  /\  x ( B  X.  C ) c )  <->  E. x
( x  e.  B  /\  ( a  e.  A  /\  c  e.  C
) ) )
10 19.41v 1854 . . . . 5  |-  ( E. x ( x  e.  B  /\  ( a  e.  A  /\  c  e.  C ) )  <->  ( E. x  x  e.  B  /\  ( a  e.  A  /\  c  e.  C
) ) )
119, 10bitr2i 184 . . . 4  |-  ( ( E. x  x  e.  B  /\  ( a  e.  A  /\  c  e.  C ) )  <->  E. x
( a ( A  X.  B ) x  /\  x ( B  X.  C ) c ) )
121, 11syl6rbb 196 . . 3  |-  ( E. x  x  e.  B  ->  ( E. x ( a ( A  X.  B ) x  /\  x ( B  X.  C ) c )  <-> 
( a  e.  A  /\  c  e.  C
) ) )
1312opabbidv 3952 . 2  |-  ( E. x  x  e.  B  ->  { <. a ,  c
>.  |  E. x
( a ( A  X.  B ) x  /\  x ( B  X.  C ) c ) }  =  { <. a ,  c >.  |  ( a  e.  A  /\  c  e.  C ) } )
14 df-co 4506 . 2  |-  ( ( B  X.  C )  o.  ( A  X.  B ) )  =  { <. a ,  c
>.  |  E. x
( a ( A  X.  B ) x  /\  x ( B  X.  C ) c ) }
15 df-xp 4503 . 2  |-  ( A  X.  C )  =  { <. a ,  c
>.  |  ( a  e.  A  /\  c  e.  C ) }
1613, 14, 153eqtr4g 2170 1  |-  ( E. x  x  e.  B  ->  ( ( B  X.  C )  o.  ( A  X.  B ) )  =  ( A  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1312   E.wex 1449    e. wcel 1461   class class class wbr 3893   {copab 3946    X. cxp 4495    o. ccom 4501
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-xp 4503  df-co 4506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator