Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-uniex2 Unicode version

Theorem bj-uniex2 11453
Description: uniex2 4254 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-uniex2  |-  E. y 
y  =  U. x
Distinct variable group:    x, y

Proof of Theorem bj-uniex2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdcuni 11413 . . . 4  |- BOUNDED 
U. x
21bdeli 11383 . . 3  |- BOUNDED  z  e.  U. x
3 zfun 4252 . . . 4  |-  E. y A. z ( E. y
( z  e.  y  /\  y  e.  x
)  ->  z  e.  y )
4 eluni 3651 . . . . . . 7  |-  ( z  e.  U. x  <->  E. y
( z  e.  y  /\  y  e.  x
) )
54imbi1i 236 . . . . . 6  |-  ( ( z  e.  U. x  ->  z  e.  y )  <-> 
( E. y ( z  e.  y  /\  y  e.  x )  ->  z  e.  y ) )
65albii 1404 . . . . 5  |-  ( A. z ( z  e. 
U. x  ->  z  e.  y )  <->  A. z
( E. y ( z  e.  y  /\  y  e.  x )  ->  z  e.  y ) )
76exbii 1541 . . . 4  |-  ( E. y A. z ( z  e.  U. x  ->  z  e.  y )  <->  E. y A. z ( E. y ( z  e.  y  /\  y  e.  x )  ->  z  e.  y ) )
83, 7mpbir 144 . . 3  |-  E. y A. z ( z  e. 
U. x  ->  z  e.  y )
92, 8bdbm1.3ii 11428 . 2  |-  E. y A. z ( z  e.  y  <->  z  e.  U. x )
10 dfcleq 2082 . . 3  |-  ( y  =  U. x  <->  A. z
( z  e.  y  <-> 
z  e.  U. x
) )
1110exbii 1541 . 2  |-  ( E. y  y  =  U. x 
<->  E. y A. z
( z  e.  y  <-> 
z  e.  U. x
) )
129, 11mpbir 144 1  |-  E. y 
y  =  U. x
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1287    = wceq 1289   E.wex 1426    e. wcel 1438   U.cuni 3648
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-un 4251  ax-bd0 11350  ax-bdex 11356  ax-bdel 11358  ax-bdsb 11359  ax-bdsep 11421
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-v 2621  df-uni 3649  df-bdc 11378
This theorem is referenced by:  bj-uniex  11454
  Copyright terms: Public domain W3C validator