Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-uniex2 Unicode version

Theorem bj-uniex2 13285
Description: uniex2 4366 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-uniex2  |-  E. y 
y  =  U. x
Distinct variable group:    x, y

Proof of Theorem bj-uniex2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdcuni 13245 . . . 4  |- BOUNDED 
U. x
21bdeli 13215 . . 3  |- BOUNDED  z  e.  U. x
3 zfun 4364 . . . 4  |-  E. y A. z ( E. y
( z  e.  y  /\  y  e.  x
)  ->  z  e.  y )
4 eluni 3747 . . . . . . 7  |-  ( z  e.  U. x  <->  E. y
( z  e.  y  /\  y  e.  x
) )
54imbi1i 237 . . . . . 6  |-  ( ( z  e.  U. x  ->  z  e.  y )  <-> 
( E. y ( z  e.  y  /\  y  e.  x )  ->  z  e.  y ) )
65albii 1447 . . . . 5  |-  ( A. z ( z  e. 
U. x  ->  z  e.  y )  <->  A. z
( E. y ( z  e.  y  /\  y  e.  x )  ->  z  e.  y ) )
76exbii 1585 . . . 4  |-  ( E. y A. z ( z  e.  U. x  ->  z  e.  y )  <->  E. y A. z ( E. y ( z  e.  y  /\  y  e.  x )  ->  z  e.  y ) )
83, 7mpbir 145 . . 3  |-  E. y A. z ( z  e. 
U. x  ->  z  e.  y )
92, 8bdbm1.3ii 13260 . 2  |-  E. y A. z ( z  e.  y  <->  z  e.  U. x )
10 dfcleq 2134 . . 3  |-  ( y  =  U. x  <->  A. z
( z  e.  y  <-> 
z  e.  U. x
) )
1110exbii 1585 . 2  |-  ( E. y  y  =  U. x 
<->  E. y A. z
( z  e.  y  <-> 
z  e.  U. x
) )
129, 11mpbir 145 1  |-  E. y 
y  =  U. x
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1330    = wceq 1332   E.wex 1469    e. wcel 1481   U.cuni 3744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-un 4363  ax-bd0 13182  ax-bdex 13188  ax-bdel 13190  ax-bdsb 13191  ax-bdsep 13253
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rex 2423  df-v 2691  df-uni 3745  df-bdc 13210
This theorem is referenced by:  bj-uniex  13286
  Copyright terms: Public domain W3C validator