Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbc8g | Unicode version |
Description: This is the closest we can get to df-sbc 2938 if we start from dfsbcq 2939 (see its comments) and dfsbcq2 2940. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbc8g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2939 | . 2 | |
2 | eleq1 2220 | . 2 | |
3 | df-clab 2144 | . . 3 | |
4 | equid 1681 | . . . 4 | |
5 | dfsbcq2 2940 | . . . 4 | |
6 | 4, 5 | ax-mp 5 | . . 3 |
7 | 3, 6 | bitr2i 184 | . 2 |
8 | 1, 2, 7 | vtoclbg 2773 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wsb 1742 wcel 2128 cab 2143 wsbc 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-sbc 2938 |
This theorem is referenced by: bj-elssuniab 13324 |
Copyright terms: Public domain | W3C validator |