ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc8g Unicode version

Theorem sbc8g 3005
Description: This is the closest we can get to df-sbc 2998 if we start from dfsbcq 2999 (see its comments) and dfsbcq2 3000. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbc8g  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph } ) )

Proof of Theorem sbc8g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 2999 . 2  |-  ( y  =  A  ->  ( [. y  /  x ]. ph  <->  [. A  /  x ]. ph ) )
2 eleq1 2267 . 2  |-  ( y  =  A  ->  (
y  e.  { x  |  ph }  <->  A  e.  { x  |  ph }
) )
3 df-clab 2191 . . 3  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
4 equid 1723 . . . 4  |-  y  =  y
5 dfsbcq2 3000 . . . 4  |-  ( y  =  y  ->  ( [ y  /  x ] ph  <->  [. y  /  x ]. ph ) )
64, 5ax-mp 5 . . 3  |-  ( [ y  /  x ] ph 
<-> 
[. y  /  x ]. ph )
73, 6bitr2i 185 . 2  |-  ( [. y  /  x ]. ph  <->  y  e.  { x  |  ph }
)
81, 2, 7vtoclbg 2833 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   [wsb 1784    e. wcel 2175   {cab 2190   [.wsbc 2997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-sbc 2998
This theorem is referenced by:  bj-elssuniab  15660
  Copyright terms: Public domain W3C validator