![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimtrdi | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
biimtrdi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
biimtrdi.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimtrdi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimtrdi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpd 144 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | biimtrdi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl6 33 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 19.33bdc 1630 ax11i 1714 equveli 1759 eupickbi 2108 nfabdw 2338 rgen2a 2531 reu6 2928 sseq0 3466 disjel 3479 preq12b 3772 prel12 3773 prneimg 3776 elinti 3855 exmidundif 4208 opthreg 4557 elreldm 4855 issref 5013 relcnvtr 5150 relresfld 5160 funopg 5252 funimass2 5296 f0dom0 5411 fvimacnv 5633 elunirn 5769 oprabid 5909 op1steq 6182 f1o2ndf1 6231 reldmtpos 6256 rntpos 6260 nntri3or 6496 nnaordex 6531 nnawordex 6532 findcard2 6891 findcard2s 6892 mkvprop 7158 cc2lem 7267 lt2addnq 7405 lt2mulnq 7406 genpelvl 7513 genpelvu 7514 distrlem5prl 7587 distrlem5pru 7588 caucvgprlemnkj 7667 map2psrprg 7806 rereceu 7890 ltxrlt 8025 0mnnnnn0 9210 elnnnn0b 9222 nn0le2is012 9337 btwnz 9374 uz11 9552 nn01to3 9619 zq 9628 xrltso 9798 xltnegi 9837 xnn0lenn0nn0 9867 xnn0xadd0 9869 iccleub 9933 fzdcel 10042 uznfz 10105 2ffzeq 10143 elfzonlteqm1 10212 icogelb 10268 flqeqceilz 10320 modqadd1 10363 modqmul1 10379 frecuzrdgtcl 10414 frecuzrdgfunlem 10421 fzfig 10432 m1expeven 10569 qsqeqor 10633 caucvgrelemcau 10991 rexico 11232 fisumss 11402 fsum2dlemstep 11444 ntrivcvgap 11558 fprodssdc 11600 fprod2dlemstep 11632 0dvds 11820 alzdvds 11862 opoe 11902 omoe 11903 opeo 11904 omeo 11905 m1exp1 11908 nn0enne 11909 nn0o1gt2 11912 gcdneg 11985 dfgcd2 12017 algcvgblem 12051 algcvga 12053 eucalglt 12059 coprmdvds 12094 divgcdcoprmex 12104 cncongr1 12105 prm2orodd 12128 prm23lt5 12265 pockthi 12358 f1ocpbl 12737 f1ovscpbl 12738 f1olecpbl 12739 ismnddef 12824 lmodfopnelem1 13419 tg2 13645 tgcl 13649 neii1 13732 neii2 13734 txlm 13864 reopnap 14123 tgioo 14131 addcncntoplem 14136 2lgsoddprmlem3 14544 bj-elssuniab 14628 bj-nn0sucALT 14815 triap 14862 |
Copyright terms: Public domain | W3C validator |