![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimtrdi | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
biimtrdi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
biimtrdi.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimtrdi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimtrdi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpd 144 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | biimtrdi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl6 33 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 19.33bdc 1640 ax11i 1724 equveli 1769 eupickbi 2119 nfabdw 2350 rgen2a 2543 reu6 2940 sseq0 3478 disjel 3491 preq12b 3784 prel12 3785 prneimg 3788 elinti 3867 exmidundif 4220 opthreg 4569 elreldm 4867 issref 5025 relcnvtr 5162 relresfld 5172 funopg 5264 funimass2 5308 f0dom0 5423 fvimacnv 5646 elunirn 5782 oprabid 5922 op1steq 6197 f1o2ndf1 6246 reldmtpos 6271 rntpos 6275 nntri3or 6511 nnaordex 6546 nnawordex 6547 findcard2 6906 findcard2s 6907 mkvprop 7173 cc2lem 7282 lt2addnq 7420 lt2mulnq 7421 genpelvl 7528 genpelvu 7529 distrlem5prl 7602 distrlem5pru 7603 caucvgprlemnkj 7682 map2psrprg 7821 rereceu 7905 ltxrlt 8040 0mnnnnn0 9225 elnnnn0b 9237 nn0le2is012 9352 btwnz 9389 uz11 9567 nn01to3 9634 zq 9643 xrltso 9813 xltnegi 9852 xnn0lenn0nn0 9882 xnn0xadd0 9884 iccleub 9948 fzdcel 10057 uznfz 10120 2ffzeq 10158 elfzonlteqm1 10227 icogelb 10283 flqeqceilz 10335 modqadd1 10378 modqmul1 10394 frecuzrdgtcl 10429 frecuzrdgfunlem 10436 fzfig 10447 m1expeven 10584 qsqeqor 10648 caucvgrelemcau 11006 rexico 11247 fisumss 11417 fsum2dlemstep 11459 ntrivcvgap 11573 fprodssdc 11615 fprod2dlemstep 11647 0dvds 11835 alzdvds 11877 opoe 11917 omoe 11918 opeo 11919 omeo 11920 m1exp1 11923 nn0enne 11924 nn0o1gt2 11927 gcdneg 12000 dfgcd2 12032 algcvgblem 12066 algcvga 12068 eucalglt 12074 coprmdvds 12109 divgcdcoprmex 12119 cncongr1 12120 prm2orodd 12143 prm23lt5 12280 pockthi 12373 f1ocpbl 12753 f1ovscpbl 12754 f1olecpbl 12755 ismnddef 12844 lmodfopnelem1 13600 tg2 13943 tgcl 13947 neii1 14030 neii2 14032 txlm 14162 reopnap 14421 tgioo 14429 addcncntoplem 14434 2lgsoddprmlem3 14842 bj-elssuniab 14926 bj-nn0sucALT 15113 triap 15161 |
Copyright terms: Public domain | W3C validator |