Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-elssuniab | GIF version |
Description: Version of elssuni 3817 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.) |
Ref | Expression |
---|---|
bj-elssuniab.nf | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
bj-elssuniab | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 → 𝐴 ⊆ ∪ {𝑥 ∣ 𝜑})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc8g 2958 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
2 | elssuni 3817 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ⊆ ∪ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | syl6bi 162 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 → 𝐴 ⊆ ∪ {𝑥 ∣ 𝜑})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 {cab 2151 Ⅎwnfc 2295 [wsbc 2951 ⊆ wss 3116 ∪ cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 df-in 3122 df-ss 3129 df-uni 3790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |