![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-elssuniab | GIF version |
Description: Version of elssuni 3867 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.) |
Ref | Expression |
---|---|
bj-elssuniab.nf | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
bj-elssuniab | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 → 𝐴 ⊆ ∪ {𝑥 ∣ 𝜑})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc8g 2997 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
2 | elssuni 3867 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ⊆ ∪ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | biimtrdi 163 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 → 𝐴 ⊆ ∪ {𝑥 ∣ 𝜑})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2167 {cab 2182 Ⅎwnfc 2326 [wsbc 2989 ⊆ wss 3157 ∪ cuni 3839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 df-in 3163 df-ss 3170 df-uni 3840 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |