| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-elssuniab | GIF version | ||
| Description: Version of elssuni 3877 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-elssuniab.nf | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| bj-elssuniab | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 → 𝐴 ⊆ ∪ {𝑥 ∣ 𝜑})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc8g 3005 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | elssuni 3877 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ⊆ ∪ {𝑥 ∣ 𝜑}) | |
| 3 | 1, 2 | biimtrdi 163 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 → 𝐴 ⊆ ∪ {𝑥 ∣ 𝜑})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 {cab 2190 Ⅎwnfc 2334 [wsbc 2997 ⊆ wss 3165 ∪ cuni 3849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-sbc 2998 df-in 3171 df-ss 3178 df-uni 3850 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |