Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-elssuniab GIF version

Theorem bj-elssuniab 15404
Description: Version of elssuni 3867 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.)
Hypothesis
Ref Expression
bj-elssuniab.nf 𝑥𝐴
Assertion
Ref Expression
bj-elssuniab (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴 {𝑥𝜑}))

Proof of Theorem bj-elssuniab
StepHypRef Expression
1 sbc8g 2997 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑}))
2 elssuni 3867 . 2 (𝐴 ∈ {𝑥𝜑} → 𝐴 {𝑥𝜑})
31, 2biimtrdi 163 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴 {𝑥𝜑}))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  {cab 2182  wnfc 2326  [wsbc 2989  wss 3157   cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-in 3163  df-ss 3170  df-uni 3840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator