| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-intabssel1 | GIF version | ||
| Description: Version of intss1 3906 using a class abstraction and implicit substitution. Closed form of intmin3 3918. (Contributed by BJ, 29-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-intabssel1.nf | ⊢ Ⅎ𝑥𝐴 |
| bj-intabssel1.nf2 | ⊢ Ⅎ𝑥𝜓 |
| bj-intabssel1.is | ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| bj-intabssel1 | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-intabssel1.nf | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | bj-intabssel1.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | bj-intabssel1.is | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) | |
| 4 | 1, 2, 3 | elabgf2 15855 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) |
| 5 | intss1 3906 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴) | |
| 6 | 4, 5 | syl6 33 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2177 {cab 2192 Ⅎwnfc 2336 ⊆ wss 3170 ∩ cint 3891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 df-int 3892 |
| This theorem is referenced by: bj-omssind 16009 |
| Copyright terms: Public domain | W3C validator |