Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-intabssel1 | GIF version |
Description: Version of intss1 3844 using a class abstraction and implicit substitution. Closed form of intmin3 3856. (Contributed by BJ, 29-Nov-2019.) |
Ref | Expression |
---|---|
bj-intabssel1.nf | ⊢ Ⅎ𝑥𝐴 |
bj-intabssel1.nf2 | ⊢ Ⅎ𝑥𝜓 |
bj-intabssel1.is | ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) |
Ref | Expression |
---|---|
bj-intabssel1 | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-intabssel1.nf | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | bj-intabssel1.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | bj-intabssel1.is | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) | |
4 | 1, 2, 3 | elabgf2 13780 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) |
5 | intss1 3844 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴) | |
6 | 4, 5 | syl6 33 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 Ⅎwnf 1453 ∈ wcel 2141 {cab 2156 Ⅎwnfc 2299 ⊆ wss 3121 ∩ cint 3829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-int 3830 |
This theorem is referenced by: bj-omssind 13935 |
Copyright terms: Public domain | W3C validator |