| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-intabssel1 | GIF version | ||
| Description: Version of intss1 3889 using a class abstraction and implicit substitution. Closed form of intmin3 3901. (Contributed by BJ, 29-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-intabssel1.nf | ⊢ Ⅎ𝑥𝐴 |
| bj-intabssel1.nf2 | ⊢ Ⅎ𝑥𝜓 |
| bj-intabssel1.is | ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| bj-intabssel1 | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-intabssel1.nf | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | bj-intabssel1.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | bj-intabssel1.is | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) | |
| 4 | 1, 2, 3 | elabgf2 15426 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) |
| 5 | intss1 3889 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴) | |
| 6 | 4, 5 | syl6 33 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 {cab 2182 Ⅎwnfc 2326 ⊆ wss 3157 ∩ cint 3874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-int 3875 |
| This theorem is referenced by: bj-omssind 15581 |
| Copyright terms: Public domain | W3C validator |