Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intabssel1 GIF version

Theorem bj-intabssel1 14946
Description: Version of intss1 3874 using a class abstraction and implicit substitution. Closed form of intmin3 3886. (Contributed by BJ, 29-Nov-2019.)
Hypotheses
Ref Expression
bj-intabssel1.nf 𝑥𝐴
bj-intabssel1.nf2 𝑥𝜓
bj-intabssel1.is (𝑥 = 𝐴 → (𝜓𝜑))
Assertion
Ref Expression
bj-intabssel1 (𝐴𝑉 → (𝜓 {𝑥𝜑} ⊆ 𝐴))

Proof of Theorem bj-intabssel1
StepHypRef Expression
1 bj-intabssel1.nf . . 3 𝑥𝐴
2 bj-intabssel1.nf2 . . 3 𝑥𝜓
3 bj-intabssel1.is . . 3 (𝑥 = 𝐴 → (𝜓𝜑))
41, 2, 3elabgf2 14936 . 2 (𝐴𝑉 → (𝜓𝐴 ∈ {𝑥𝜑}))
5 intss1 3874 . 2 (𝐴 ∈ {𝑥𝜑} → {𝑥𝜑} ⊆ 𝐴)
64, 5syl6 33 1 (𝐴𝑉 → (𝜓 {𝑥𝜑} ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wnf 1471  wcel 2160  {cab 2175  wnfc 2319  wss 3144   cint 3859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-in 3150  df-ss 3157  df-int 3860
This theorem is referenced by:  bj-omssind  15091
  Copyright terms: Public domain W3C validator