Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intabssel1 GIF version

Theorem bj-intabssel1 13671
Description: Version of intss1 3839 using a class abstraction and implicit substitution. Closed form of intmin3 3851. (Contributed by BJ, 29-Nov-2019.)
Hypotheses
Ref Expression
bj-intabssel1.nf 𝑥𝐴
bj-intabssel1.nf2 𝑥𝜓
bj-intabssel1.is (𝑥 = 𝐴 → (𝜓𝜑))
Assertion
Ref Expression
bj-intabssel1 (𝐴𝑉 → (𝜓 {𝑥𝜑} ⊆ 𝐴))

Proof of Theorem bj-intabssel1
StepHypRef Expression
1 bj-intabssel1.nf . . 3 𝑥𝐴
2 bj-intabssel1.nf2 . . 3 𝑥𝜓
3 bj-intabssel1.is . . 3 (𝑥 = 𝐴 → (𝜓𝜑))
41, 2, 3elabgf2 13661 . 2 (𝐴𝑉 → (𝜓𝐴 ∈ {𝑥𝜑}))
5 intss1 3839 . 2 (𝐴 ∈ {𝑥𝜑} → {𝑥𝜑} ⊆ 𝐴)
64, 5syl6 33 1 (𝐴𝑉 → (𝜓 {𝑥𝜑} ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wnf 1448  wcel 2136  {cab 2151  wnfc 2295  wss 3116   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-int 3825
This theorem is referenced by:  bj-omssind  13817
  Copyright terms: Public domain W3C validator