Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omssind Unicode version

Theorem bj-omssind 16298
Description:  om is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-omssind  |-  ( A  e.  V  ->  (Ind  A  ->  om  C_  A ) )

Proof of Theorem bj-omssind
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nfcv 2372 . . 3  |-  F/_ x A
2 nfv 1574 . . 3  |-  F/ xInd  A
3 bj-indeq 16292 . . . 4  |-  ( x  =  A  ->  (Ind  x 
<-> Ind 
A ) )
43biimprd 158 . . 3  |-  ( x  =  A  ->  (Ind  A  -> Ind  x ) )
51, 2, 4bj-intabssel1 16154 . 2  |-  ( A  e.  V  ->  (Ind  A  ->  |^| { x  | Ind  x }  C_  A
) )
6 bj-dfom 16296 . . 3  |-  om  =  |^| { x  | Ind  x }
76sseq1i 3250 . 2  |-  ( om  C_  A  <->  |^| { x  | Ind  x }  C_  A
)
85, 7imbitrrdi 162 1  |-  ( A  e.  V  ->  (Ind  A  ->  om  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   {cab 2215    C_ wss 3197   |^|cint 3923   omcom 4682  Ind wind 16289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-int 3924  df-iom 4683  df-bj-ind 16290
This theorem is referenced by:  bj-om  16300  peano5set  16303
  Copyright terms: Public domain W3C validator