Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omssind Unicode version

Theorem bj-omssind 13817
Description:  om is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-omssind  |-  ( A  e.  V  ->  (Ind  A  ->  om  C_  A ) )

Proof of Theorem bj-omssind
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nfcv 2308 . . 3  |-  F/_ x A
2 nfv 1516 . . 3  |-  F/ xInd  A
3 bj-indeq 13811 . . . 4  |-  ( x  =  A  ->  (Ind  x 
<-> Ind 
A ) )
43biimprd 157 . . 3  |-  ( x  =  A  ->  (Ind  A  -> Ind  x ) )
51, 2, 4bj-intabssel1 13671 . 2  |-  ( A  e.  V  ->  (Ind  A  ->  |^| { x  | Ind  x }  C_  A
) )
6 bj-dfom 13815 . . 3  |-  om  =  |^| { x  | Ind  x }
76sseq1i 3168 . 2  |-  ( om  C_  A  <->  |^| { x  | Ind  x }  C_  A
)
85, 7syl6ibr 161 1  |-  ( A  e.  V  ->  (Ind  A  ->  om  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   {cab 2151    C_ wss 3116   |^|cint 3824   omcom 4567  Ind wind 13808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-int 3825  df-iom 4568  df-bj-ind 13809
This theorem is referenced by:  bj-om  13819  peano5set  13822
  Copyright terms: Public domain W3C validator