Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omssind | Unicode version |
Description: is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-omssind | Ind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . . 3 | |
2 | nfv 1516 | . . 3 Ind | |
3 | bj-indeq 13811 | . . . 4 Ind Ind | |
4 | 3 | biimprd 157 | . . 3 Ind Ind |
5 | 1, 2, 4 | bj-intabssel1 13671 | . 2 Ind Ind |
6 | bj-dfom 13815 | . . 3 Ind | |
7 | 6 | sseq1i 3168 | . 2 Ind |
8 | 5, 7 | syl6ibr 161 | 1 Ind |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 cab 2151 wss 3116 cint 3824 com 4567 Ind wind 13808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-int 3825 df-iom 4568 df-bj-ind 13809 |
This theorem is referenced by: bj-om 13819 peano5set 13822 |
Copyright terms: Public domain | W3C validator |