ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbval Unicode version

Theorem cbval 1752
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.)
Hypotheses
Ref Expression
cbval.1  |-  F/ y
ph
cbval.2  |-  F/ x ps
cbval.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbval  |-  ( A. x ph  <->  A. y ps )

Proof of Theorem cbval
StepHypRef Expression
1 cbval.1 . . 3  |-  F/ y
ph
21nfri 1517 . 2  |-  ( ph  ->  A. y ph )
3 cbval.2 . . 3  |-  F/ x ps
43nfri 1517 . 2  |-  ( ps 
->  A. x ps )
5 cbval.3 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
62, 4, 5cbvalh 1751 1  |-  ( A. x ph  <->  A. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351   F/wnf 1458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532
This theorem depends on definitions:  df-bi 117  df-nf 1459
This theorem is referenced by:  sb8  1854  cbval2  1919  sb8eu  2037  abbi  2289  cleqf  2342  cbvralf  2694  ralab2  2899  cbvralcsf  3117  dfss2f  3144  elintab  3851  cbviota  5175  sb8iota  5177  dffun6f  5221  dffun4f  5224  mptfvex  5593  findcard2  6879  findcard2s  6880
  Copyright terms: Public domain W3C validator