ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbval Unicode version

Theorem cbval 1776
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.)
Hypotheses
Ref Expression
cbval.1  |-  F/ y
ph
cbval.2  |-  F/ x ps
cbval.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbval  |-  ( A. x ph  <->  A. y ps )

Proof of Theorem cbval
StepHypRef Expression
1 cbval.1 . . 3  |-  F/ y
ph
21nfri 1541 . 2  |-  ( ph  ->  A. y ph )
3 cbval.2 . . 3  |-  F/ x ps
43nfri 1541 . 2  |-  ( ps 
->  A. x ps )
5 cbval.3 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
62, 4, 5cbvalh 1775 1  |-  ( A. x ph  <->  A. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1370   F/wnf 1482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-nf 1483
This theorem is referenced by:  sb8  1878  cbval2  1944  sb8eu  2066  abbi  2318  cleqf  2372  cbvralf  2729  ralab2  2936  cbvralcsf  3155  dfss2f  3183  elintab  3895  cbviota  5236  sb8iota  5238  dffun6f  5283  dffun4f  5286  mptfvex  5664  findcard2  6985  findcard2s  6986
  Copyright terms: Public domain W3C validator