ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbval Unicode version

Theorem cbval 1754
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.)
Hypotheses
Ref Expression
cbval.1  |-  F/ y
ph
cbval.2  |-  F/ x ps
cbval.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbval  |-  ( A. x ph  <->  A. y ps )

Proof of Theorem cbval
StepHypRef Expression
1 cbval.1 . . 3  |-  F/ y
ph
21nfri 1519 . 2  |-  ( ph  ->  A. y ph )
3 cbval.2 . . 3  |-  F/ x ps
43nfri 1519 . 2  |-  ( ps 
->  A. x ps )
5 cbval.3 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
62, 4, 5cbvalh 1753 1  |-  ( A. x ph  <->  A. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351   F/wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  sb8  1856  cbval2  1921  sb8eu  2039  abbi  2291  cleqf  2344  cbvralf  2697  ralab2  2902  cbvralcsf  3120  dfss2f  3147  elintab  3856  cbviota  5184  sb8iota  5186  dffun6f  5230  dffun4f  5233  mptfvex  5602  findcard2  6889  findcard2s  6890
  Copyright terms: Public domain W3C validator