Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvex4v | Unicode version |
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
cbvex4v.1 | |
cbvex4v.2 |
Ref | Expression |
---|---|
cbvex4v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvex4v.1 | . . . 4 | |
2 | 1 | 2exbidv 1856 | . . 3 |
3 | 2 | cbvex2v 1912 | . 2 |
4 | cbvex4v.2 | . . . 4 | |
5 | 4 | cbvex2v 1912 | . . 3 |
6 | 5 | 2exbii 1594 | . 2 |
7 | 3, 6 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: enq0sym 7373 addnq0mo 7388 mulnq0mo 7389 addsrmo 7684 mulsrmo 7685 |
Copyright terms: Public domain | W3C validator |