ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnq0mo Unicode version

Theorem mulnq0mo 7574
Description: There is at most one result from multiplying nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.)
Assertion
Ref Expression
mulnq0mo  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  ) )
Distinct variable groups:    t, A, u, v, w, z    t, B, u, v, w, z

Proof of Theorem mulnq0mo
Dummy variables  f  g  h  q  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enq0er 7561 . . . . . . . . . . . . . 14  |- ~Q0  Er  ( om  X.  N. )
21a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  -> ~Q0  Er  ( om  X.  N. ) )
3 nnnq0lem1 7572 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  (
( ( ( w  e.  om  /\  v  e.  N. )  /\  (
s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  /\  (
( w  .o  f
)  =  ( v  .o  s )  /\  ( u  .o  h
)  =  ( t  .o  g ) ) ) )
4 mulcmpblnq0 7570 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e. 
om  /\  v  e.  N. )  /\  (
s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  ->  (
( ( w  .o  f )  =  ( v  .o  s )  /\  ( u  .o  h )  =  ( t  .o  g ) )  ->  <. ( w  .o  u ) ,  ( v  .o  t
) >. ~Q0  <.
( s  .o  g
) ,  ( f  .o  h ) >.
) )
54imp 124 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( w  e.  om  /\  v  e.  N. )  /\  (
s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  /\  (
( w  .o  f
)  =  ( v  .o  s )  /\  ( u  .o  h
)  =  ( t  .o  g ) ) )  ->  <. ( w  .o  u ) ,  ( v  .o  t
) >. ~Q0  <.
( s  .o  g
) ,  ( f  .o  h ) >.
)
63, 5syl 14 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  <. (
w  .o  u ) ,  ( v  .o  t ) >. ~Q0 
<. ( s  .o  g
) ,  ( f  .o  h ) >.
)
72, 6erthi 6678 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  [ <. ( w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  =  [ <. (
s  .o  g ) ,  ( f  .o  h ) >. ] ~Q0  )
8 simprlr 538 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  )
9 simprrr 540 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  q  =  [ <. ( s  .o  g ) ,  ( f  .o  h )
>. ] ~Q0  )
107, 8, 93eqtr4d 2249 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  z  =  q )
1110expr 375 . . . . . . . . . 10  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  ) )  ->  (
( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) )
1211exlimdvv 1922 . . . . . . . . 9  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  ) )  ->  ( E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g ) ,  ( f  .o  h )
>. ] ~Q0  )  ->  z  =  q ) )
1312exlimdvv 1922 . . . . . . . 8  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  ) )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g ) ,  ( f  .o  h )
>. ] ~Q0  )  ->  z  =  q ) )
1413ex 115 . . . . . . 7  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) ) )
1514exlimdvv 1922 . . . . . 6  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  ( E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) ) )
1615exlimdvv 1922 . . . . 5  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) ) )
1716impd 254 . . . 4  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  (
( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
1817alrimivv 1899 . . 3  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
19 opeq12 3824 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. w ,  v >.  =  <. s ,  f
>. )
2019eceq1d 6666 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. w ,  v
>. ] ~Q0  =  [ <. s ,  f
>. ] ~Q0  )
2120eqeq2d 2218 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  ( A  =  [ <. w ,  v >. ] ~Q0  <->  A  =  [ <. s ,  f
>. ] ~Q0  ) )
2221anbi1d 465 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  <-> 
( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  ) ) )
23 simpl 109 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  w  =  s )
2423oveq1d 5969 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( w  .o  u
)  =  ( s  .o  u ) )
25 simpr 110 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  v  =  f )
2625oveq1d 5969 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( v  .o  t
)  =  ( f  .o  t ) )
2724, 26opeq12d 3830 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. ( w  .o  u
) ,  ( v  .o  t ) >.  =  <. ( s  .o  u ) ,  ( f  .o  t )
>. )
2827eceq1d 6666 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  =  [ <. ( s  .o  u ) ,  ( f  .o  t )
>. ] ~Q0  )
2928eqeq2d 2218 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( q  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  <->  q  =  [ <. ( s  .o  u ) ,  ( f  .o  t )
>. ] ~Q0  ) )
3022, 29anbi12d 473 . . . . . . 7  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  <-> 
( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  u
) ,  ( f  .o  t ) >. ] ~Q0  ) ) )
31 opeq12 3824 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. u ,  t >.  =  <. g ,  h >. )
3231eceq1d 6666 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. u ,  t
>. ] ~Q0  =  [ <. g ,  h >. ] ~Q0  )
3332eqeq2d 2218 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  ( B  =  [ <. u ,  t >. ] ~Q0  <->  B  =  [ <. g ,  h >. ] ~Q0  ) )
3433anbi2d 464 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  <-> 
( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  ) ) )
35 simpl 109 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  u  =  g )
3635oveq2d 5970 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( s  .o  u
)  =  ( s  .o  g ) )
37 simpr 110 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  t  =  h )
3837oveq2d 5970 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( f  .o  t
)  =  ( f  .o  h ) )
3936, 38opeq12d 3830 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. ( s  .o  u
) ,  ( f  .o  t ) >.  =  <. ( s  .o  g ) ,  ( f  .o  h )
>. )
4039eceq1d 6666 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. ( s  .o  u ) ,  ( f  .o  t )
>. ] ~Q0  =  [ <. ( s  .o  g ) ,  ( f  .o  h )
>. ] ~Q0  )
4140eqeq2d 2218 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( q  =  [ <. ( s  .o  u
) ,  ( f  .o  t ) >. ] ~Q0  <->  q  =  [ <. ( s  .o  g ) ,  ( f  .o  h )
>. ] ~Q0  ) )
4234, 41anbi12d 473 . . . . . . 7  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  u
) ,  ( f  .o  t ) >. ] ~Q0  )  <-> 
( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  ) ) )
4330, 42cbvex4v 1959 . . . . . 6  |-  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  ) 
<->  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g ) ,  ( f  .o  h )
>. ] ~Q0  ) )
4443anbi2i 457 . . . . 5  |-  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  ) )  <->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  ) ) )
4544imbi1i 238 . . . 4  |-  ( ( ( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q )  <->  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
46452albii 1495 . . 3  |-  ( A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q )  <->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( s  .o  g
) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
4718, 46sylibr 134 . 2  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q ) )
48 eqeq1 2213 . . . . 5  |-  ( z  =  q  ->  (
z  =  [ <. ( w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  <-> 
q  =  [ <. ( w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  ) )
4948anbi2d 464 . . . 4  |-  ( z  =  q  ->  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  <-> 
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
50494exbidv 1894 . . 3  |-  ( z  =  q  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  ) 
<->  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  ) ) )
5150mo4 2116 . 2  |-  ( E* z E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  <->  A. z A. q ( ( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q ) )
5247, 51sylibr 134 1  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373   E.wex 1516   E*wmo 2056    e. wcel 2177   <.cop 3638   class class class wbr 4048   omcom 4643    X. cxp 4678  (class class class)co 5954    .o comu 6510    Er wer 6627   [cec 6628   /.cqs 6629   N.cnpi 7398   ~Q0 ceq0 7412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-oadd 6516  df-omul 6517  df-er 6630  df-ec 6632  df-qs 6636  df-ni 7430  df-mi 7432  df-enq0 7550
This theorem is referenced by:  mulnnnq0  7576
  Copyright terms: Public domain W3C validator