ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsrmo Unicode version

Theorem addsrmo 7279
Description: There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
Assertion
Ref Expression
addsrmo  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )
Distinct variable groups:    t, A, u, v, w, z    t, B, u, v, w, z

Proof of Theorem addsrmo
Dummy variables  f  g  h  q  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrer 7271 . . . . . . . . . . . . . . . 16  |-  ~R  Er  ( P.  X.  P. )
21a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ~R  Er  ( P.  X.  P. ) )
3 prsrlem1 7278 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( (
( ( w  e. 
P.  /\  v  e.  P. )  /\  (
s  e.  P.  /\  f  e.  P. )
)  /\  ( (
u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
) )  /\  (
( w  +P.  f
)  =  ( v  +P.  s )  /\  ( u  +P.  h )  =  ( t  +P.  g ) ) ) )
4 addcmpblnr 7275 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e. 
P.  /\  v  e.  P. )  /\  (
s  e.  P.  /\  f  e.  P. )
)  /\  ( (
u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
) )  ->  (
( ( w  +P.  f )  =  ( v  +P.  s )  /\  ( u  +P.  h )  =  ( t  +P.  g ) )  ->  <. ( w  +P.  u ) ,  ( v  +P.  t
) >.  ~R  <. ( s  +P.  g ) ,  ( f  +P.  h
) >. ) )
54imp 122 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( w  e.  P.  /\  v  e.  P. )  /\  (
s  e.  P.  /\  f  e.  P. )
)  /\  ( (
u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
) )  /\  (
( w  +P.  f
)  =  ( v  +P.  s )  /\  ( u  +P.  h )  =  ( t  +P.  g ) ) )  ->  <. ( w  +P.  u ) ,  ( v  +P.  t )
>.  ~R  <. ( s  +P.  g ) ,  ( f  +P.  h )
>. )
63, 5syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  <. ( w  +P.  u ) ,  ( v  +P.  t
) >.  ~R  <. ( s  +P.  g ) ,  ( f  +P.  h
) >. )
72, 6erthi 6328 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  =  [ <. ( s  +P.  g ) ,  ( f  +P.  h )
>. ]  ~R  )
87adantrlr 469 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  )  /\  ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  =  [ <. ( s  +P.  g ) ,  ( f  +P.  h )
>. ]  ~R  )
98adantrrr 471 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( s  +P.  g
) ,  ( f  +P.  h ) >. ]  ~R  ) ) )  ->  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  =  [ <. ( s  +P.  g ) ,  ( f  +P.  h )
>. ]  ~R  )
10 simprlr 505 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( s  +P.  g
) ,  ( f  +P.  h ) >. ]  ~R  ) ) )  ->  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  )
11 simprrr 507 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( s  +P.  g
) ,  ( f  +P.  h ) >. ]  ~R  ) ) )  ->  q  =  [ <. ( s  +P.  g
) ,  ( f  +P.  h ) >. ]  ~R  )
129, 10, 113eqtr4d 2130 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( s  +P.  g
) ,  ( f  +P.  h ) >. ]  ~R  ) ) )  ->  z  =  q )
1312expr 367 . . . . . . . . . 10  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )  ->  (
( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
s  +P.  g ) ,  ( f  +P.  h ) >. ]  ~R  )  ->  z  =  q ) )
1413exlimdvv 1825 . . . . . . . . 9  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )  ->  ( E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
s  +P.  g ) ,  ( f  +P.  h ) >. ]  ~R  )  ->  z  =  q ) )
1514exlimdvv 1825 . . . . . . . 8  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
s  +P.  g ) ,  ( f  +P.  h ) >. ]  ~R  )  ->  z  =  q ) )
1615ex 113 . . . . . . 7  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( s  +P.  g
) ,  ( f  +P.  h ) >. ]  ~R  )  ->  z  =  q ) ) )
1716exlimdvv 1825 . . . . . 6  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
s  +P.  g ) ,  ( f  +P.  h ) >. ]  ~R  )  ->  z  =  q ) ) )
1817exlimdvv 1825 . . . . 5  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
s  +P.  g ) ,  ( f  +P.  h ) >. ]  ~R  )  ->  z  =  q ) ) )
1918impd 251 . . . 4  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( s  +P.  g
) ,  ( f  +P.  h ) >. ]  ~R  ) )  -> 
z  =  q ) )
2019alrimivv 1803 . . 3  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( s  +P.  g
) ,  ( f  +P.  h ) >. ]  ~R  ) )  -> 
z  =  q ) )
21 opeq12 3622 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. w ,  v >.  =  <. s ,  f
>. )
2221eceq1d 6318 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. w ,  v
>. ]  ~R  =  [ <. s ,  f >. ]  ~R  )
2322eqeq2d 2099 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  ( A  =  [ <. w ,  v >. ]  ~R  <->  A  =  [ <. s ,  f >. ]  ~R  ) )
2423anbi1d 453 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  <->  ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  ) ) )
25 simpl 107 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  w  =  s )
2625oveq1d 5659 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( w  +P.  u
)  =  ( s  +P.  u ) )
27 simpr 108 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  v  =  f )
2827oveq1d 5659 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( v  +P.  t
)  =  ( f  +P.  t ) )
2926, 28opeq12d 3628 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. ( w  +P.  u
) ,  ( v  +P.  t ) >.  =  <. ( s  +P.  u ) ,  ( f  +P.  t )
>. )
3029eceq1d 6318 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  =  [ <. ( s  +P.  u
) ,  ( f  +P.  t ) >. ]  ~R  )
3130eqeq2d 2099 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( q  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  <->  q  =  [ <. ( s  +P.  u
) ,  ( f  +P.  t ) >. ]  ~R  ) )
3224, 31anbi12d 457 . . . . . . 7  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  q  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  )  <->  ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  q  =  [ <. ( s  +P.  u
) ,  ( f  +P.  t ) >. ]  ~R  ) ) )
33 opeq12 3622 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. u ,  t >.  =  <. g ,  h >. )
3433eceq1d 6318 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. u ,  t
>. ]  ~R  =  [ <. g ,  h >. ]  ~R  )
3534eqeq2d 2099 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  ( B  =  [ <. u ,  t >. ]  ~R  <->  B  =  [ <. g ,  h >. ]  ~R  ) )
3635anbi2d 452 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  <->  ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )
37 simpl 107 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  u  =  g )
3837oveq2d 5660 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( s  +P.  u
)  =  ( s  +P.  g ) )
39 simpr 108 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  t  =  h )
4039oveq2d 5660 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( f  +P.  t
)  =  ( f  +P.  h ) )
4138, 40opeq12d 3628 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. ( s  +P.  u
) ,  ( f  +P.  t ) >.  =  <. ( s  +P.  g ) ,  ( f  +P.  h )
>. )
4241eceq1d 6318 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. ( s  +P.  u ) ,  ( f  +P.  t )
>. ]  ~R  =  [ <. ( s  +P.  g
) ,  ( f  +P.  h ) >. ]  ~R  )
4342eqeq2d 2099 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( q  =  [ <. ( s  +P.  u
) ,  ( f  +P.  t ) >. ]  ~R  <->  q  =  [ <. ( s  +P.  g
) ,  ( f  +P.  h ) >. ]  ~R  ) )
4436, 43anbi12d 457 . . . . . . 7  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  q  =  [ <. ( s  +P.  u
) ,  ( f  +P.  t ) >. ]  ~R  )  <->  ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( s  +P.  g
) ,  ( f  +P.  h ) >. ]  ~R  ) ) )
4532, 44cbvex4v 1853 . . . . . 6  |-  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) 
<->  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
s  +P.  g ) ,  ( f  +P.  h ) >. ]  ~R  ) )
4645anbi2i 445 . . . . 5  |-  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )  <->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( s  +P.  g
) ,  ( f  +P.  h ) >. ]  ~R  ) ) )
4746imbi1i 236 . . . 4  |-  ( ( ( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )  ->  z  =  q )  <->  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( s  +P.  g
) ,  ( f  +P.  h ) >. ]  ~R  ) )  -> 
z  =  q ) )
48472albii 1405 . . 3  |-  ( A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )  ->  z  =  q )  <->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( s  +P.  g
) ,  ( f  +P.  h ) >. ]  ~R  ) )  -> 
z  =  q ) )
4920, 48sylibr 132 . 2  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )  ->  z  =  q ) )
50 eqeq1 2094 . . . . 5  |-  ( z  =  q  ->  (
z  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  <->  q  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )
5150anbi2d 452 . . . 4  |-  ( z  =  q  ->  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) 
<->  ( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) )
52514exbidv 1798 . . 3  |-  ( z  =  q  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) 
<->  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) )
5352mo4 2009 . 2  |-  ( E* z E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) 
<-> 
A. z A. q
( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  q  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  ) )  -> 
z  =  q ) )
5449, 53sylibr 132 1  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1287    = wceq 1289   E.wex 1426    e. wcel 1438   E*wmo 1949   <.cop 3447   class class class wbr 3843    X. cxp 4434  (class class class)co 5644    Er wer 6279   [cec 6280   /.cqs 6281   P.cnp 6840    +P. cpp 6842    ~R cer 6845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3952  ax-sep 3955  ax-nul 3963  ax-pow 4007  ax-pr 4034  ax-un 4258  ax-setind 4351  ax-iinf 4401
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-int 3687  df-iun 3730  df-br 3844  df-opab 3898  df-mpt 3899  df-tr 3935  df-eprel 4114  df-id 4118  df-po 4121  df-iso 4122  df-iord 4191  df-on 4193  df-suc 4196  df-iom 4404  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-rn 4447  df-res 4448  df-ima 4449  df-iota 4975  df-fun 5012  df-fn 5013  df-f 5014  df-f1 5015  df-fo 5016  df-f1o 5017  df-fv 5018  df-ov 5647  df-oprab 5648  df-mpt2 5649  df-1st 5903  df-2nd 5904  df-recs 6062  df-irdg 6127  df-1o 6173  df-2o 6174  df-oadd 6177  df-omul 6178  df-er 6282  df-ec 6284  df-qs 6288  df-ni 6853  df-pli 6854  df-mi 6855  df-lti 6856  df-plpq 6893  df-mpq 6894  df-enq 6896  df-nqqs 6897  df-plqqs 6898  df-mqqs 6899  df-1nqqs 6900  df-rq 6901  df-ltnqqs 6902  df-enq0 6973  df-nq0 6974  df-0nq0 6975  df-plq0 6976  df-mq0 6977  df-inp 7015  df-iplp 7017  df-enr 7262
This theorem is referenced by:  addsrpr  7281
  Copyright terms: Public domain W3C validator