ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsrmo Unicode version

Theorem mulsrmo 7931
Description: There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
Assertion
Ref Expression
mulsrmo  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)
Distinct variable groups:    t, A, u, v, w, z    t, B, u, v, w, z

Proof of Theorem mulsrmo
Dummy variables  f  g  h  q  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrer 7922 . . . . . . . . . . . . . . . 16  |-  ~R  Er  ( P.  X.  P. )
21a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ~R  Er  ( P.  X.  P. ) )
3 prsrlem1 7929 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( (
( ( w  e. 
P.  /\  v  e.  P. )  /\  (
s  e.  P.  /\  f  e.  P. )
)  /\  ( (
u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
) )  /\  (
( w  +P.  f
)  =  ( v  +P.  s )  /\  ( u  +P.  h )  =  ( t  +P.  g ) ) ) )
4 mulcmpblnr 7928 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e. 
P.  /\  v  e.  P. )  /\  (
s  e.  P.  /\  f  e.  P. )
)  /\  ( (
u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
) )  ->  (
( ( w  +P.  f )  =  ( v  +P.  s )  /\  ( u  +P.  h )  =  ( t  +P.  g ) )  ->  <. ( ( w  .P.  u )  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >.  ~R  <. ( ( s  .P.  g )  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ) )
54imp 124 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( w  e.  P.  /\  v  e.  P. )  /\  (
s  e.  P.  /\  f  e.  P. )
)  /\  ( (
u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
) )  /\  (
( w  +P.  f
)  =  ( v  +P.  s )  /\  ( u  +P.  h )  =  ( t  +P.  g ) ) )  ->  <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >.  ~R  <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >.
)
63, 5syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  <. ( ( w  .P.  u )  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >.  ~R  <. ( ( s  .P.  g )  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. )
72, 6erthi 6728 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  =  [ <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >. ]  ~R  )
87adantrlr 485 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  =  [ <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >. ]  ~R  )
98adantrrr 487 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
) )  ->  [ <. ( ( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  =  [ <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >. ]  ~R  )
10 simprlr 538 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
) )  ->  z  =  [ <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >. ]  ~R  )
11 simprrr 540 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
) )  ->  q  =  [ <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >. ]  ~R  )
129, 10, 113eqtr4d 2272 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
) )  ->  z  =  q )
1312expr 375 . . . . . . . . . 10  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  ( (
( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )  ->  z  =  q ) )
1413exlimdvv 1944 . . . . . . . . 9  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  ( E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  )  ->  z  =  q ) )
1514exlimdvv 1944 . . . . . . . 8  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  )  ->  z  =  q ) )
1615ex 115 . . . . . . 7  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  )  ->  z  =  q ) ) )
1716exlimdvv 1944 . . . . . 6  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )  ->  z  =  q ) ) )
1817exlimdvv 1944 . . . . 5  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )  ->  z  =  q ) ) )
1918impd 254 . . . 4  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
)  ->  z  =  q ) )
2019alrimivv 1921 . . 3  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
)  ->  z  =  q ) )
21 opeq12 3859 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. w ,  v >.  =  <. s ,  f
>. )
2221eceq1d 6716 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. w ,  v
>. ]  ~R  =  [ <. s ,  f >. ]  ~R  )
2322eqeq2d 2241 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  ( A  =  [ <. w ,  v >. ]  ~R  <->  A  =  [ <. s ,  f >. ]  ~R  ) )
2423anbi1d 465 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  <->  ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  ) ) )
25 simpl 109 . . . . . . . . . . . . 13  |-  ( ( w  =  s  /\  v  =  f )  ->  w  =  s )
2625oveq1d 6016 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( w  .P.  u
)  =  ( s  .P.  u ) )
27 simpr 110 . . . . . . . . . . . . 13  |-  ( ( w  =  s  /\  v  =  f )  ->  v  =  f )
2827oveq1d 6016 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( v  .P.  t
)  =  ( f  .P.  t ) )
2926, 28oveq12d 6019 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( w  .P.  u )  +P.  (
v  .P.  t )
)  =  ( ( s  .P.  u )  +P.  ( f  .P.  t ) ) )
3025oveq1d 6016 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( w  .P.  t
)  =  ( s  .P.  t ) )
3127oveq1d 6016 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( v  .P.  u
)  =  ( f  .P.  u ) )
3230, 31oveq12d 6019 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( w  .P.  t )  +P.  (
v  .P.  u )
)  =  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) )
3329, 32opeq12d 3865 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >.  =  <. ( ( s  .P.  u )  +P.  ( f  .P.  t
) ) ,  ( ( s  .P.  t
)  +P.  ( f  .P.  u ) ) >.
)
3433eceq1d 6716 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >. ]  ~R  =  [ <. ( ( s  .P.  u
)  +P.  ( f  .P.  t ) ) ,  ( ( s  .P.  t )  +P.  (
f  .P.  u )
) >. ]  ~R  )
3534eqeq2d 2241 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( q  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  <->  q  =  [ <. ( ( s  .P.  u )  +P.  (
f  .P.  t )
) ,  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) >. ]  ~R  ) )
3624, 35anbi12d 473 . . . . . . 7  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  q  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  )  <->  ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  u )  +P.  (
f  .P.  t )
) ,  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) >. ]  ~R  ) ) )
37 opeq12 3859 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. u ,  t >.  =  <. g ,  h >. )
3837eceq1d 6716 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. u ,  t
>. ]  ~R  =  [ <. g ,  h >. ]  ~R  )
3938eqeq2d 2241 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  ( B  =  [ <. u ,  t >. ]  ~R  <->  B  =  [ <. g ,  h >. ]  ~R  ) )
4039anbi2d 464 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  <->  ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )
41 simpl 109 . . . . . . . . . . . . 13  |-  ( ( u  =  g  /\  t  =  h )  ->  u  =  g )
4241oveq2d 6017 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( s  .P.  u
)  =  ( s  .P.  g ) )
43 simpr 110 . . . . . . . . . . . . 13  |-  ( ( u  =  g  /\  t  =  h )  ->  t  =  h )
4443oveq2d 6017 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( f  .P.  t
)  =  ( f  .P.  h ) )
4542, 44oveq12d 6019 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( s  .P.  u )  +P.  (
f  .P.  t )
)  =  ( ( s  .P.  g )  +P.  ( f  .P.  h ) ) )
4643oveq2d 6017 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( s  .P.  t
)  =  ( s  .P.  h ) )
4741oveq2d 6017 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( f  .P.  u
)  =  ( f  .P.  g ) )
4846, 47oveq12d 6019 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( s  .P.  t )  +P.  (
f  .P.  u )
)  =  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) )
4945, 48opeq12d 3865 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. ( ( s  .P.  u )  +P.  (
f  .P.  t )
) ,  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) >.  =  <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >.
)
5049eceq1d 6716 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. ( ( s  .P.  u )  +P.  ( f  .P.  t
) ) ,  ( ( s  .P.  t
)  +P.  ( f  .P.  u ) ) >. ]  ~R  =  [ <. ( ( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
5150eqeq2d 2241 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( q  =  [ <. ( ( s  .P.  u )  +P.  (
f  .P.  t )
) ,  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) >. ]  ~R  <->  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  ) )
5240, 51anbi12d 473 . . . . . . 7  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  u )  +P.  (
f  .P.  t )
) ,  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) >. ]  ~R  )  <->  ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  ) ) )
5336, 52cbvex4v 1981 . . . . . 6  |-  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  <->  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
)
5453anbi2i 457 . . . . 5  |-  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  <->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  ) ) )
5554imbi1i 238 . . . 4  |-  ( ( ( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  z  =  q )  <->  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
)  ->  z  =  q ) )
56552albii 1517 . . 3  |-  ( A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  z  =  q )  <->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
)  ->  z  =  q ) )
5720, 56sylibr 134 . 2  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  z  =  q ) )
58 eqeq1 2236 . . . . 5  |-  ( z  =  q  ->  (
z  =  [ <. ( ( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  <->  q  =  [ <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >. ]  ~R  ) )
5958anbi2d 464 . . . 4  |-  ( z  =  q  ->  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  <->  ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) )
60594exbidv 1916 . . 3  |-  ( z  =  q  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  <->  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) )
6160mo4 2139 . 2  |-  ( E* z E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  <->  A. z A. q ( ( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  z  =  q ) )
6257, 61sylibr 134 1  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1393    = wceq 1395   E.wex 1538   E*wmo 2078    e. wcel 2200   <.cop 3669   class class class wbr 4083    X. cxp 4717  (class class class)co 6001    Er wer 6677   [cec 6678   /.cqs 6679   P.cnp 7478    +P. cpp 7480    .P. cmp 7481    ~R cer 7483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-iplp 7655  df-imp 7656  df-enr 7913
This theorem is referenced by:  mulsrpr  7933
  Copyright terms: Public domain W3C validator