ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsrmo Unicode version

Theorem mulsrmo 7695
Description: There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
Assertion
Ref Expression
mulsrmo  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)
Distinct variable groups:    t, A, u, v, w, z    t, B, u, v, w, z

Proof of Theorem mulsrmo
Dummy variables  f  g  h  q  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrer 7686 . . . . . . . . . . . . . . . 16  |-  ~R  Er  ( P.  X.  P. )
21a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ~R  Er  ( P.  X.  P. ) )
3 prsrlem1 7693 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( (
( ( w  e. 
P.  /\  v  e.  P. )  /\  (
s  e.  P.  /\  f  e.  P. )
)  /\  ( (
u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
) )  /\  (
( w  +P.  f
)  =  ( v  +P.  s )  /\  ( u  +P.  h )  =  ( t  +P.  g ) ) ) )
4 mulcmpblnr 7692 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e. 
P.  /\  v  e.  P. )  /\  (
s  e.  P.  /\  f  e.  P. )
)  /\  ( (
u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
) )  ->  (
( ( w  +P.  f )  =  ( v  +P.  s )  /\  ( u  +P.  h )  =  ( t  +P.  g ) )  ->  <. ( ( w  .P.  u )  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >.  ~R  <. ( ( s  .P.  g )  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ) )
54imp 123 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( w  e.  P.  /\  v  e.  P. )  /\  (
s  e.  P.  /\  f  e.  P. )
)  /\  ( (
u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
) )  /\  (
( w  +P.  f
)  =  ( v  +P.  s )  /\  ( u  +P.  h )  =  ( t  +P.  g ) ) )  ->  <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >.  ~R  <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >.
)
63, 5syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  <. ( ( w  .P.  u )  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >.  ~R  <. ( ( s  .P.  g )  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. )
72, 6erthi 6556 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  =  [ <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >. ]  ~R  )
87adantrlr 482 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  =  [ <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >. ]  ~R  )
98adantrrr 484 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
) )  ->  [ <. ( ( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  =  [ <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >. ]  ~R  )
10 simprlr 533 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
) )  ->  z  =  [ <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >. ]  ~R  )
11 simprrr 535 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
) )  ->  q  =  [ <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >. ]  ~R  )
129, 10, 113eqtr4d 2213 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
) )  ->  z  =  q )
1312expr 373 . . . . . . . . . 10  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  ( (
( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )  ->  z  =  q ) )
1413exlimdvv 1890 . . . . . . . . 9  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  ( E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  )  ->  z  =  q ) )
1514exlimdvv 1890 . . . . . . . 8  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  )  ->  z  =  q ) )
1615ex 114 . . . . . . 7  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  )  ->  z  =  q ) ) )
1716exlimdvv 1890 . . . . . 6  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )  ->  z  =  q ) ) )
1817exlimdvv 1890 . . . . 5  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )  ->  z  =  q ) ) )
1918impd 252 . . . 4  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
)  ->  z  =  q ) )
2019alrimivv 1868 . . 3  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
)  ->  z  =  q ) )
21 opeq12 3765 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. w ,  v >.  =  <. s ,  f
>. )
2221eceq1d 6546 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. w ,  v
>. ]  ~R  =  [ <. s ,  f >. ]  ~R  )
2322eqeq2d 2182 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  ( A  =  [ <. w ,  v >. ]  ~R  <->  A  =  [ <. s ,  f >. ]  ~R  ) )
2423anbi1d 462 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  <->  ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  ) ) )
25 simpl 108 . . . . . . . . . . . . 13  |-  ( ( w  =  s  /\  v  =  f )  ->  w  =  s )
2625oveq1d 5866 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( w  .P.  u
)  =  ( s  .P.  u ) )
27 simpr 109 . . . . . . . . . . . . 13  |-  ( ( w  =  s  /\  v  =  f )  ->  v  =  f )
2827oveq1d 5866 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( v  .P.  t
)  =  ( f  .P.  t ) )
2926, 28oveq12d 5869 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( w  .P.  u )  +P.  (
v  .P.  t )
)  =  ( ( s  .P.  u )  +P.  ( f  .P.  t ) ) )
3025oveq1d 5866 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( w  .P.  t
)  =  ( s  .P.  t ) )
3127oveq1d 5866 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( v  .P.  u
)  =  ( f  .P.  u ) )
3230, 31oveq12d 5869 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( w  .P.  t )  +P.  (
v  .P.  u )
)  =  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) )
3329, 32opeq12d 3771 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >.  =  <. ( ( s  .P.  u )  +P.  ( f  .P.  t
) ) ,  ( ( s  .P.  t
)  +P.  ( f  .P.  u ) ) >.
)
3433eceq1d 6546 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >. ]  ~R  =  [ <. ( ( s  .P.  u
)  +P.  ( f  .P.  t ) ) ,  ( ( s  .P.  t )  +P.  (
f  .P.  u )
) >. ]  ~R  )
3534eqeq2d 2182 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( q  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  <->  q  =  [ <. ( ( s  .P.  u )  +P.  (
f  .P.  t )
) ,  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) >. ]  ~R  ) )
3624, 35anbi12d 470 . . . . . . 7  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  q  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  )  <->  ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  u )  +P.  (
f  .P.  t )
) ,  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) >. ]  ~R  ) ) )
37 opeq12 3765 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. u ,  t >.  =  <. g ,  h >. )
3837eceq1d 6546 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. u ,  t
>. ]  ~R  =  [ <. g ,  h >. ]  ~R  )
3938eqeq2d 2182 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  ( B  =  [ <. u ,  t >. ]  ~R  <->  B  =  [ <. g ,  h >. ]  ~R  ) )
4039anbi2d 461 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  <->  ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )
41 simpl 108 . . . . . . . . . . . . 13  |-  ( ( u  =  g  /\  t  =  h )  ->  u  =  g )
4241oveq2d 5867 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( s  .P.  u
)  =  ( s  .P.  g ) )
43 simpr 109 . . . . . . . . . . . . 13  |-  ( ( u  =  g  /\  t  =  h )  ->  t  =  h )
4443oveq2d 5867 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( f  .P.  t
)  =  ( f  .P.  h ) )
4542, 44oveq12d 5869 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( s  .P.  u )  +P.  (
f  .P.  t )
)  =  ( ( s  .P.  g )  +P.  ( f  .P.  h ) ) )
4643oveq2d 5867 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( s  .P.  t
)  =  ( s  .P.  h ) )
4741oveq2d 5867 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( f  .P.  u
)  =  ( f  .P.  g ) )
4846, 47oveq12d 5869 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( s  .P.  t )  +P.  (
f  .P.  u )
)  =  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) )
4945, 48opeq12d 3771 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. ( ( s  .P.  u )  +P.  (
f  .P.  t )
) ,  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) >.  =  <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >.
)
5049eceq1d 6546 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. ( ( s  .P.  u )  +P.  ( f  .P.  t
) ) ,  ( ( s  .P.  t
)  +P.  ( f  .P.  u ) ) >. ]  ~R  =  [ <. ( ( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
5150eqeq2d 2182 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( q  =  [ <. ( ( s  .P.  u )  +P.  (
f  .P.  t )
) ,  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) >. ]  ~R  <->  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  ) )
5240, 51anbi12d 470 . . . . . . 7  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  u )  +P.  (
f  .P.  t )
) ,  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) >. ]  ~R  )  <->  ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  ) ) )
5336, 52cbvex4v 1923 . . . . . 6  |-  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  <->  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
)
5453anbi2i 454 . . . . 5  |-  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  <->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  ) ) )
5554imbi1i 237 . . . 4  |-  ( ( ( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  z  =  q )  <->  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
)  ->  z  =  q ) )
56552albii 1464 . . 3  |-  ( A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  z  =  q )  <->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
)  ->  z  =  q ) )
5720, 56sylibr 133 . 2  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  z  =  q ) )
58 eqeq1 2177 . . . . 5  |-  ( z  =  q  ->  (
z  =  [ <. ( ( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  <->  q  =  [ <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >. ]  ~R  ) )
5958anbi2d 461 . . . 4  |-  ( z  =  q  ->  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  <->  ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) )
60594exbidv 1863 . . 3  |-  ( z  =  q  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  <->  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) )
6160mo4 2080 . 2  |-  ( E* z E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  <->  A. z A. q ( ( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  z  =  q ) )
6257, 61sylibr 133 1  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1346    = wceq 1348   E.wex 1485   E*wmo 2020    e. wcel 2141   <.cop 3584   class class class wbr 3987    X. cxp 4607  (class class class)co 5851    Er wer 6507   [cec 6508   /.cqs 6509   P.cnp 7242    +P. cpp 7244    .P. cmp 7245    ~R cer 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-1o 6393  df-2o 6394  df-oadd 6397  df-omul 6398  df-er 6510  df-ec 6512  df-qs 6516  df-ni 7255  df-pli 7256  df-mi 7257  df-lti 7258  df-plpq 7295  df-mpq 7296  df-enq 7298  df-nqqs 7299  df-plqqs 7300  df-mqqs 7301  df-1nqqs 7302  df-rq 7303  df-ltnqqs 7304  df-enq0 7375  df-nq0 7376  df-0nq0 7377  df-plq0 7378  df-mq0 7379  df-inp 7417  df-iplp 7419  df-imp 7420  df-enr 7677
This theorem is referenced by:  mulsrpr  7697
  Copyright terms: Public domain W3C validator