ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnq0mo Unicode version

Theorem addnq0mo 7388
Description: There is at most one result from adding nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
Assertion
Ref Expression
addnq0mo  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )
Distinct variable groups:    t, A, u, v, w, z    t, B, u, v, w, z

Proof of Theorem addnq0mo
Dummy variables  f  g  h  q  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enq0er 7376 . . . . . . . . . . . . . 14  |- ~Q0  Er  ( om  X.  N. )
21a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  -> ~Q0  Er  ( om  X.  N. ) )
3 nnnq0lem1 7387 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  (
( ( ( w  e.  om  /\  v  e.  N. )  /\  (
s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  /\  (
( w  .o  f
)  =  ( v  .o  s )  /\  ( u  .o  h
)  =  ( t  .o  g ) ) ) )
4 addcmpblnq0 7384 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e. 
om  /\  v  e.  N. )  /\  (
s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  ->  (
( ( w  .o  f )  =  ( v  .o  s )  /\  ( u  .o  h )  =  ( t  .o  g ) )  ->  <. ( ( w  .o  t )  +o  ( v  .o  u ) ) ,  ( v  .o  t
) >. ~Q0  <.
( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >.
) )
54imp 123 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( w  e.  om  /\  v  e.  N. )  /\  (
s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  /\  (
( w  .o  f
)  =  ( v  .o  s )  /\  ( u  .o  h
)  =  ( t  .o  g ) ) )  ->  <. ( ( w  .o  t )  +o  ( v  .o  u ) ) ,  ( v  .o  t
) >. ~Q0  <.
( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >.
)
63, 5syl 14 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ~Q0 
<. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >.
)
72, 6erthi 6547 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  [ <. ( ( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  =  [ <. (
( s  .o  h
)  +o  ( f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  )
8 simprlr 528 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )
9 simprrr 530 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  q  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  )
107, 8, 93eqtr4d 2208 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  z  =  q )
1110expr 373 . . . . . . . . . 10  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )  ->  (
( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) )
1211exlimdvv 1885 . . . . . . . . 9  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )  ->  ( E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  )  ->  z  =  q ) )
1312exlimdvv 1885 . . . . . . . 8  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  )  ->  z  =  q ) )
1413ex 114 . . . . . . 7  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) ) )
1514exlimdvv 1885 . . . . . 6  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  ( E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) ) )
1615exlimdvv 1885 . . . . 5  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) ) )
1716impd 252 . . . 4  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  (
( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
1817alrimivv 1863 . . 3  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
19 opeq12 3760 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. w ,  v >.  =  <. s ,  f
>. )
2019eceq1d 6537 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. w ,  v
>. ] ~Q0  =  [ <. s ,  f
>. ] ~Q0  )
2120eqeq2d 2177 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  ( A  =  [ <. w ,  v >. ] ~Q0  <->  A  =  [ <. s ,  f
>. ] ~Q0  ) )
2221anbi1d 461 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  <-> 
( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  ) ) )
23 simpl 108 . . . . . . . . . . . . 13  |-  ( ( w  =  s  /\  v  =  f )  ->  w  =  s )
2423oveq1d 5857 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( w  .o  t
)  =  ( s  .o  t ) )
25 simpr 109 . . . . . . . . . . . . 13  |-  ( ( w  =  s  /\  v  =  f )  ->  v  =  f )
2625oveq1d 5857 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( v  .o  u
)  =  ( f  .o  u ) )
2724, 26oveq12d 5860 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( w  .o  t )  +o  (
v  .o  u ) )  =  ( ( s  .o  t )  +o  ( f  .o  u ) ) )
2825oveq1d 5857 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( v  .o  t
)  =  ( f  .o  t ) )
2927, 28opeq12d 3766 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >.  =  <. ( ( s  .o  t )  +o  ( f  .o  u
) ) ,  ( f  .o  t )
>. )
3029eceq1d 6537 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  =  [ <. ( ( s  .o  t )  +o  ( f  .o  u
) ) ,  ( f  .o  t )
>. ] ~Q0  )
3130eqeq2d 2177 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  <->  q  =  [ <. ( ( s  .o  t )  +o  ( f  .o  u
) ) ,  ( f  .o  t )
>. ] ~Q0  ) )
3222, 31anbi12d 465 . . . . . . 7  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  <-> 
( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  t )  +o  (
f  .o  u ) ) ,  ( f  .o  t ) >. ] ~Q0  ) ) )
33 opeq12 3760 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. u ,  t >.  =  <. g ,  h >. )
3433eceq1d 6537 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. u ,  t
>. ] ~Q0  =  [ <. g ,  h >. ] ~Q0  )
3534eqeq2d 2177 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  ( B  =  [ <. u ,  t >. ] ~Q0  <->  B  =  [ <. g ,  h >. ] ~Q0  ) )
3635anbi2d 460 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  <-> 
( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  ) ) )
37 simpr 109 . . . . . . . . . . . . 13  |-  ( ( u  =  g  /\  t  =  h )  ->  t  =  h )
3837oveq2d 5858 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( s  .o  t
)  =  ( s  .o  h ) )
39 simpl 108 . . . . . . . . . . . . 13  |-  ( ( u  =  g  /\  t  =  h )  ->  u  =  g )
4039oveq2d 5858 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( f  .o  u
)  =  ( f  .o  g ) )
4138, 40oveq12d 5860 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( s  .o  t )  +o  (
f  .o  u ) )  =  ( ( s  .o  h )  +o  ( f  .o  g ) ) )
4237oveq2d 5858 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( f  .o  t
)  =  ( f  .o  h ) )
4341, 42opeq12d 3766 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. ( ( s  .o  t )  +o  (
f  .o  u ) ) ,  ( f  .o  t ) >.  =  <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. )
4443eceq1d 6537 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. ( ( s  .o  t )  +o  ( f  .o  u
) ) ,  ( f  .o  t )
>. ] ~Q0  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  )
4544eqeq2d 2177 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( q  =  [ <. ( ( s  .o  t )  +o  (
f  .o  u ) ) ,  ( f  .o  t ) >. ] ~Q0  <->  q  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  ) )
4636, 45anbi12d 465 . . . . . . 7  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  t )  +o  (
f  .o  u ) ) ,  ( f  .o  t ) >. ] ~Q0  )  <-> 
( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )
4732, 46cbvex4v 1918 . . . . . 6  |-  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) 
<->  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  ) )
4847anbi2i 453 . . . . 5  |-  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )  <->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )
4948imbi1i 237 . . . 4  |-  ( ( ( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q )  <->  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
50492albii 1459 . . 3  |-  ( A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q )  <->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
5118, 50sylibr 133 . 2  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q ) )
52 eqeq1 2172 . . . . 5  |-  ( z  =  q  ->  (
z  =  [ <. ( ( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  <-> 
q  =  [ <. ( ( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )
5352anbi2d 460 . . . 4  |-  ( z  =  q  ->  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  <-> 
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
54534exbidv 1858 . . 3  |-  ( z  =  q  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) 
<->  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) ) )
5554mo4 2075 . 2  |-  ( E* z E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  <->  A. z A. q ( ( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q ) )
5651, 55sylibr 133 1  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341    = wceq 1343   E.wex 1480   E*wmo 2015    e. wcel 2136   <.cop 3579   class class class wbr 3982   omcom 4567    X. cxp 4602  (class class class)co 5842    +o coa 6381    .o comu 6382    Er wer 6498   [cec 6499   /.cqs 6500   N.cnpi 7213   ~Q0 ceq0 7227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-enq0 7365
This theorem is referenced by:  addnnnq0  7390
  Copyright terms: Public domain W3C validator