ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnq0mo Unicode version

Theorem addnq0mo 7475
Description: There is at most one result from adding nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
Assertion
Ref Expression
addnq0mo  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )
Distinct variable groups:    t, A, u, v, w, z    t, B, u, v, w, z

Proof of Theorem addnq0mo
Dummy variables  f  g  h  q  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enq0er 7463 . . . . . . . . . . . . . 14  |- ~Q0  Er  ( om  X.  N. )
21a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  -> ~Q0  Er  ( om  X.  N. ) )
3 nnnq0lem1 7474 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  (
( ( ( w  e.  om  /\  v  e.  N. )  /\  (
s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  /\  (
( w  .o  f
)  =  ( v  .o  s )  /\  ( u  .o  h
)  =  ( t  .o  g ) ) ) )
4 addcmpblnq0 7471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e. 
om  /\  v  e.  N. )  /\  (
s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  ->  (
( ( w  .o  f )  =  ( v  .o  s )  /\  ( u  .o  h )  =  ( t  .o  g ) )  ->  <. ( ( w  .o  t )  +o  ( v  .o  u ) ) ,  ( v  .o  t
) >. ~Q0  <.
( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >.
) )
54imp 124 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( w  e.  om  /\  v  e.  N. )  /\  (
s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  /\  (
( w  .o  f
)  =  ( v  .o  s )  /\  ( u  .o  h
)  =  ( t  .o  g ) ) )  ->  <. ( ( w  .o  t )  +o  ( v  .o  u ) ) ,  ( v  .o  t
) >. ~Q0  <.
( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >.
)
63, 5syl 14 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ~Q0 
<. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >.
)
72, 6erthi 6606 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  [ <. ( ( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  =  [ <. (
( s  .o  h
)  +o  ( f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  )
8 simprlr 538 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )
9 simprrr 540 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  q  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  )
107, 8, 93eqtr4d 2232 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  z  =  q )
1110expr 375 . . . . . . . . . 10  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )  ->  (
( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) )
1211exlimdvv 1909 . . . . . . . . 9  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )  ->  ( E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  )  ->  z  =  q ) )
1312exlimdvv 1909 . . . . . . . 8  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  )  ->  z  =  q ) )
1413ex 115 . . . . . . 7  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) ) )
1514exlimdvv 1909 . . . . . 6  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  ( E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) ) )
1615exlimdvv 1909 . . . . 5  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) ) )
1716impd 254 . . . 4  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  (
( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
1817alrimivv 1886 . . 3  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
19 opeq12 3795 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. w ,  v >.  =  <. s ,  f
>. )
2019eceq1d 6594 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. w ,  v
>. ] ~Q0  =  [ <. s ,  f
>. ] ~Q0  )
2120eqeq2d 2201 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  ( A  =  [ <. w ,  v >. ] ~Q0  <->  A  =  [ <. s ,  f
>. ] ~Q0  ) )
2221anbi1d 465 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  <-> 
( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  ) ) )
23 simpl 109 . . . . . . . . . . . . 13  |-  ( ( w  =  s  /\  v  =  f )  ->  w  =  s )
2423oveq1d 5910 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( w  .o  t
)  =  ( s  .o  t ) )
25 simpr 110 . . . . . . . . . . . . 13  |-  ( ( w  =  s  /\  v  =  f )  ->  v  =  f )
2625oveq1d 5910 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( v  .o  u
)  =  ( f  .o  u ) )
2724, 26oveq12d 5913 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( w  .o  t )  +o  (
v  .o  u ) )  =  ( ( s  .o  t )  +o  ( f  .o  u ) ) )
2825oveq1d 5910 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( v  .o  t
)  =  ( f  .o  t ) )
2927, 28opeq12d 3801 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >.  =  <. ( ( s  .o  t )  +o  ( f  .o  u
) ) ,  ( f  .o  t )
>. )
3029eceq1d 6594 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  =  [ <. ( ( s  .o  t )  +o  ( f  .o  u
) ) ,  ( f  .o  t )
>. ] ~Q0  )
3130eqeq2d 2201 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  <->  q  =  [ <. ( ( s  .o  t )  +o  ( f  .o  u
) ) ,  ( f  .o  t )
>. ] ~Q0  ) )
3222, 31anbi12d 473 . . . . . . 7  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  <-> 
( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  t )  +o  (
f  .o  u ) ) ,  ( f  .o  t ) >. ] ~Q0  ) ) )
33 opeq12 3795 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. u ,  t >.  =  <. g ,  h >. )
3433eceq1d 6594 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. u ,  t
>. ] ~Q0  =  [ <. g ,  h >. ] ~Q0  )
3534eqeq2d 2201 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  ( B  =  [ <. u ,  t >. ] ~Q0  <->  B  =  [ <. g ,  h >. ] ~Q0  ) )
3635anbi2d 464 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  <-> 
( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  ) ) )
37 simpr 110 . . . . . . . . . . . . 13  |-  ( ( u  =  g  /\  t  =  h )  ->  t  =  h )
3837oveq2d 5911 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( s  .o  t
)  =  ( s  .o  h ) )
39 simpl 109 . . . . . . . . . . . . 13  |-  ( ( u  =  g  /\  t  =  h )  ->  u  =  g )
4039oveq2d 5911 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( f  .o  u
)  =  ( f  .o  g ) )
4138, 40oveq12d 5913 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( s  .o  t )  +o  (
f  .o  u ) )  =  ( ( s  .o  h )  +o  ( f  .o  g ) ) )
4237oveq2d 5911 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( f  .o  t
)  =  ( f  .o  h ) )
4341, 42opeq12d 3801 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. ( ( s  .o  t )  +o  (
f  .o  u ) ) ,  ( f  .o  t ) >.  =  <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. )
4443eceq1d 6594 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. ( ( s  .o  t )  +o  ( f  .o  u
) ) ,  ( f  .o  t )
>. ] ~Q0  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  )
4544eqeq2d 2201 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( q  =  [ <. ( ( s  .o  t )  +o  (
f  .o  u ) ) ,  ( f  .o  t ) >. ] ~Q0  <->  q  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  ) )
4636, 45anbi12d 473 . . . . . . 7  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  t )  +o  (
f  .o  u ) ) ,  ( f  .o  t ) >. ] ~Q0  )  <-> 
( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )
4732, 46cbvex4v 1942 . . . . . 6  |-  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) 
<->  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  ) )
4847anbi2i 457 . . . . 5  |-  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )  <->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )
4948imbi1i 238 . . . 4  |-  ( ( ( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q )  <->  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
50492albii 1482 . . 3  |-  ( A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q )  <->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
5118, 50sylibr 134 . 2  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q ) )
52 eqeq1 2196 . . . . 5  |-  ( z  =  q  ->  (
z  =  [ <. ( ( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  <-> 
q  =  [ <. ( ( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )
5352anbi2d 464 . . . 4  |-  ( z  =  q  ->  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  <-> 
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
54534exbidv 1881 . . 3  |-  ( z  =  q  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) 
<->  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) ) )
5554mo4 2099 . 2  |-  ( E* z E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  <->  A. z A. q ( ( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q ) )
5651, 55sylibr 134 1  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364   E.wex 1503   E*wmo 2039    e. wcel 2160   <.cop 3610   class class class wbr 4018   omcom 4607    X. cxp 4642  (class class class)co 5895    +o coa 6437    .o comu 6438    Er wer 6555   [cec 6556   /.cqs 6557   N.cnpi 7300   ~Q0 ceq0 7314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-irdg 6394  df-oadd 6444  df-omul 6445  df-er 6558  df-ec 6560  df-qs 6564  df-ni 7332  df-mi 7334  df-enq0 7452
This theorem is referenced by:  addnnnq0  7477
  Copyright terms: Public domain W3C validator