ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexpr Unicode version

Theorem recexpr 7825
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
recexpr  |-  ( A  e.  P.  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
Distinct variable group:    x, A

Proof of Theorem recexpr
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 4088 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( z  <Q  w  <->  u 
<Q  v ) )
2 simpr 110 . . . . . . . . 9  |-  ( ( z  =  u  /\  w  =  v )  ->  w  =  v )
32fveq2d 5631 . . . . . . . 8  |-  ( ( z  =  u  /\  w  =  v )  ->  ( *Q `  w
)  =  ( *Q
`  v ) )
43eleq1d 2298 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( *Q `  w )  e.  ( 2nd `  A )  <-> 
( *Q `  v
)  e.  ( 2nd `  A ) ) )
51, 4anbi12d 473 . . . . . 6  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A ) )  <->  ( u  <Q  v  /\  ( *Q `  v )  e.  ( 2nd `  A ) ) ) )
65cbvexdva 1976 . . . . 5  |-  ( z  =  u  ->  ( E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A ) )  <->  E. v ( u 
<Q  v  /\  ( *Q `  v )  e.  ( 2nd `  A
) ) ) )
76cbvabv 2354 . . . 4  |-  { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) }  =  { u  |  E. v ( u  <Q  v  /\  ( *Q `  v )  e.  ( 2nd `  A ) ) }
8 simpl 109 . . . . . . . 8  |-  ( ( z  =  u  /\  w  =  v )  ->  z  =  u )
92, 8breq12d 4096 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( w  <Q  z  <->  v 
<Q  u ) )
103eleq1d 2298 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( *Q `  w )  e.  ( 1st `  A )  <-> 
( *Q `  v
)  e.  ( 1st `  A ) ) )
119, 10anbi12d 473 . . . . . 6  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) )  <->  ( v  <Q  u  /\  ( *Q `  v )  e.  ( 1st `  A ) ) ) )
1211cbvexdva 1976 . . . . 5  |-  ( z  =  u  ->  ( E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) )  <->  E. v ( v 
<Q  u  /\  ( *Q `  v )  e.  ( 1st `  A
) ) ) )
1312cbvabv 2354 . . . 4  |-  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A
) ) }  =  { u  |  E. v ( v  <Q  u  /\  ( *Q `  v )  e.  ( 1st `  A ) ) }
147, 13opeq12i 3862 . . 3  |-  <. { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  =  <. { u  |  E. v
( u  <Q  v  /\  ( *Q `  v
)  e.  ( 2nd `  A ) ) } ,  { u  |  E. v ( v 
<Q  u  /\  ( *Q `  v )  e.  ( 1st `  A
) ) } >.
1514recexprlempr 7819 . 2  |-  ( A  e.  P.  ->  <. { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  e.  P. )
1614recexprlemex 7824 . 2  |-  ( A  e.  P.  ->  ( A  .P.  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >. )  =  1P )
17 oveq2 6009 . . . 4  |-  ( x  =  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  ->  ( A  .P.  x )  =  ( A  .P.  <. { z  |  E. w
( z  <Q  w  /\  ( *Q `  w
)  e.  ( 2nd `  A ) ) } ,  { z  |  E. w ( w 
<Q  z  /\  ( *Q `  w )  e.  ( 1st `  A
) ) } >. ) )
1817eqeq1d 2238 . . 3  |-  ( x  =  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  ->  (
( A  .P.  x
)  =  1P  <->  ( A  .P.  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >. )  =  1P ) )
1918rspcev 2907 . 2  |-  ( (
<. { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A ) ) } ,  {
z  |  E. w
( w  <Q  z  /\  ( *Q `  w
)  e.  ( 1st `  A ) ) }
>.  e.  P.  /\  ( A  .P.  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >. )  =  1P )  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
2015, 16, 19syl2anc 411 1  |-  ( A  e.  P.  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   E.wrex 2509   <.cop 3669   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   1stc1st 6284   2ndc2nd 6285   *Qcrq 7471    <Q cltq 7472   P.cnp 7478   1Pc1p 7479    .P. cmp 7481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-i1p 7654  df-imp 7656
This theorem is referenced by:  ltmprr  7829  recexgt0sr  7960
  Copyright terms: Public domain W3C validator