ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexpr Unicode version

Theorem recexpr 7700
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
recexpr  |-  ( A  e.  P.  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
Distinct variable group:    x, A

Proof of Theorem recexpr
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 4035 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( z  <Q  w  <->  u 
<Q  v ) )
2 simpr 110 . . . . . . . . 9  |-  ( ( z  =  u  /\  w  =  v )  ->  w  =  v )
32fveq2d 5559 . . . . . . . 8  |-  ( ( z  =  u  /\  w  =  v )  ->  ( *Q `  w
)  =  ( *Q
`  v ) )
43eleq1d 2262 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( *Q `  w )  e.  ( 2nd `  A )  <-> 
( *Q `  v
)  e.  ( 2nd `  A ) ) )
51, 4anbi12d 473 . . . . . 6  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A ) )  <->  ( u  <Q  v  /\  ( *Q `  v )  e.  ( 2nd `  A ) ) ) )
65cbvexdva 1941 . . . . 5  |-  ( z  =  u  ->  ( E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A ) )  <->  E. v ( u 
<Q  v  /\  ( *Q `  v )  e.  ( 2nd `  A
) ) ) )
76cbvabv 2318 . . . 4  |-  { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) }  =  { u  |  E. v ( u  <Q  v  /\  ( *Q `  v )  e.  ( 2nd `  A ) ) }
8 simpl 109 . . . . . . . 8  |-  ( ( z  =  u  /\  w  =  v )  ->  z  =  u )
92, 8breq12d 4043 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( w  <Q  z  <->  v 
<Q  u ) )
103eleq1d 2262 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( *Q `  w )  e.  ( 1st `  A )  <-> 
( *Q `  v
)  e.  ( 1st `  A ) ) )
119, 10anbi12d 473 . . . . . 6  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) )  <->  ( v  <Q  u  /\  ( *Q `  v )  e.  ( 1st `  A ) ) ) )
1211cbvexdva 1941 . . . . 5  |-  ( z  =  u  ->  ( E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) )  <->  E. v ( v 
<Q  u  /\  ( *Q `  v )  e.  ( 1st `  A
) ) ) )
1312cbvabv 2318 . . . 4  |-  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A
) ) }  =  { u  |  E. v ( v  <Q  u  /\  ( *Q `  v )  e.  ( 1st `  A ) ) }
147, 13opeq12i 3810 . . 3  |-  <. { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  =  <. { u  |  E. v
( u  <Q  v  /\  ( *Q `  v
)  e.  ( 2nd `  A ) ) } ,  { u  |  E. v ( v 
<Q  u  /\  ( *Q `  v )  e.  ( 1st `  A
) ) } >.
1514recexprlempr 7694 . 2  |-  ( A  e.  P.  ->  <. { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  e.  P. )
1614recexprlemex 7699 . 2  |-  ( A  e.  P.  ->  ( A  .P.  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >. )  =  1P )
17 oveq2 5927 . . . 4  |-  ( x  =  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  ->  ( A  .P.  x )  =  ( A  .P.  <. { z  |  E. w
( z  <Q  w  /\  ( *Q `  w
)  e.  ( 2nd `  A ) ) } ,  { z  |  E. w ( w 
<Q  z  /\  ( *Q `  w )  e.  ( 1st `  A
) ) } >. ) )
1817eqeq1d 2202 . . 3  |-  ( x  =  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  ->  (
( A  .P.  x
)  =  1P  <->  ( A  .P.  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >. )  =  1P ) )
1918rspcev 2865 . 2  |-  ( (
<. { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A ) ) } ,  {
z  |  E. w
( w  <Q  z  /\  ( *Q `  w
)  e.  ( 1st `  A ) ) }
>.  e.  P.  /\  ( A  .P.  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >. )  =  1P )  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
2015, 16, 19syl2anc 411 1  |-  ( A  e.  P.  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   E.wrex 2473   <.cop 3622   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   1stc1st 6193   2ndc2nd 6194   *Qcrq 7346    <Q cltq 7347   P.cnp 7353   1Pc1p 7354    .P. cmp 7356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-imp 7531
This theorem is referenced by:  ltmprr  7704  recexgt0sr  7835
  Copyright terms: Public domain W3C validator