ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexpr Unicode version

Theorem recexpr 7753
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
recexpr  |-  ( A  e.  P.  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
Distinct variable group:    x, A

Proof of Theorem recexpr
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 4050 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( z  <Q  w  <->  u 
<Q  v ) )
2 simpr 110 . . . . . . . . 9  |-  ( ( z  =  u  /\  w  =  v )  ->  w  =  v )
32fveq2d 5582 . . . . . . . 8  |-  ( ( z  =  u  /\  w  =  v )  ->  ( *Q `  w
)  =  ( *Q
`  v ) )
43eleq1d 2274 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( *Q `  w )  e.  ( 2nd `  A )  <-> 
( *Q `  v
)  e.  ( 2nd `  A ) ) )
51, 4anbi12d 473 . . . . . 6  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A ) )  <->  ( u  <Q  v  /\  ( *Q `  v )  e.  ( 2nd `  A ) ) ) )
65cbvexdva 1953 . . . . 5  |-  ( z  =  u  ->  ( E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A ) )  <->  E. v ( u 
<Q  v  /\  ( *Q `  v )  e.  ( 2nd `  A
) ) ) )
76cbvabv 2330 . . . 4  |-  { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) }  =  { u  |  E. v ( u  <Q  v  /\  ( *Q `  v )  e.  ( 2nd `  A ) ) }
8 simpl 109 . . . . . . . 8  |-  ( ( z  =  u  /\  w  =  v )  ->  z  =  u )
92, 8breq12d 4058 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( w  <Q  z  <->  v 
<Q  u ) )
103eleq1d 2274 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( *Q `  w )  e.  ( 1st `  A )  <-> 
( *Q `  v
)  e.  ( 1st `  A ) ) )
119, 10anbi12d 473 . . . . . 6  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) )  <->  ( v  <Q  u  /\  ( *Q `  v )  e.  ( 1st `  A ) ) ) )
1211cbvexdva 1953 . . . . 5  |-  ( z  =  u  ->  ( E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) )  <->  E. v ( v 
<Q  u  /\  ( *Q `  v )  e.  ( 1st `  A
) ) ) )
1312cbvabv 2330 . . . 4  |-  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A
) ) }  =  { u  |  E. v ( v  <Q  u  /\  ( *Q `  v )  e.  ( 1st `  A ) ) }
147, 13opeq12i 3824 . . 3  |-  <. { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  =  <. { u  |  E. v
( u  <Q  v  /\  ( *Q `  v
)  e.  ( 2nd `  A ) ) } ,  { u  |  E. v ( v 
<Q  u  /\  ( *Q `  v )  e.  ( 1st `  A
) ) } >.
1514recexprlempr 7747 . 2  |-  ( A  e.  P.  ->  <. { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  e.  P. )
1614recexprlemex 7752 . 2  |-  ( A  e.  P.  ->  ( A  .P.  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >. )  =  1P )
17 oveq2 5954 . . . 4  |-  ( x  =  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  ->  ( A  .P.  x )  =  ( A  .P.  <. { z  |  E. w
( z  <Q  w  /\  ( *Q `  w
)  e.  ( 2nd `  A ) ) } ,  { z  |  E. w ( w 
<Q  z  /\  ( *Q `  w )  e.  ( 1st `  A
) ) } >. ) )
1817eqeq1d 2214 . . 3  |-  ( x  =  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  ->  (
( A  .P.  x
)  =  1P  <->  ( A  .P.  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >. )  =  1P ) )
1918rspcev 2877 . 2  |-  ( (
<. { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A ) ) } ,  {
z  |  E. w
( w  <Q  z  /\  ( *Q `  w
)  e.  ( 1st `  A ) ) }
>.  e.  P.  /\  ( A  .P.  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >. )  =  1P )  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
2015, 16, 19syl2anc 411 1  |-  ( A  e.  P.  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1515    e. wcel 2176   {cab 2191   E.wrex 2485   <.cop 3636   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   1stc1st 6226   2ndc2nd 6227   *Qcrq 7399    <Q cltq 7400   P.cnp 7406   1Pc1p 7407    .P. cmp 7409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-eprel 4337  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-1o 6504  df-2o 6505  df-oadd 6508  df-omul 6509  df-er 6622  df-ec 6624  df-qs 6628  df-ni 7419  df-pli 7420  df-mi 7421  df-lti 7422  df-plpq 7459  df-mpq 7460  df-enq 7462  df-nqqs 7463  df-plqqs 7464  df-mqqs 7465  df-1nqqs 7466  df-rq 7467  df-ltnqqs 7468  df-enq0 7539  df-nq0 7540  df-0nq0 7541  df-plq0 7542  df-mq0 7543  df-inp 7581  df-i1p 7582  df-imp 7584
This theorem is referenced by:  ltmprr  7757  recexgt0sr  7888
  Copyright terms: Public domain W3C validator