ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexpri Unicode version

Theorem ltexpri 7673
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
Assertion
Ref Expression
ltexpri  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltexpri
Dummy variables  y  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . 8  |-  ( ( y  =  u  /\  z  =  v )  ->  z  =  v )
21eleq1d 2262 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( z  e.  ( 2nd `  A )  <-> 
v  e.  ( 2nd `  A ) ) )
3 simpl 109 . . . . . . . . 9  |-  ( ( y  =  u  /\  z  =  v )  ->  y  =  u )
41, 3oveq12d 5936 . . . . . . . 8  |-  ( ( y  =  u  /\  z  =  v )  ->  ( z  +Q  y
)  =  ( v  +Q  u ) )
54eleq1d 2262 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  +Q  y )  e.  ( 1st `  B )  <-> 
( v  +Q  u
)  e.  ( 1st `  B ) ) )
62, 5anbi12d 473 . . . . . 6  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) )  <->  ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) ) )
76cbvexdva 1941 . . . . 5  |-  ( y  =  u  ->  ( E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) )  <->  E. v ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) ) )
87cbvrabv 2759 . . . 4  |-  { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) }  =  {
u  e.  Q.  |  E. v ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) }
91eleq1d 2262 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( z  e.  ( 1st `  A )  <-> 
v  e.  ( 1st `  A ) ) )
104eleq1d 2262 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  +Q  y )  e.  ( 2nd `  B )  <-> 
( v  +Q  u
)  e.  ( 2nd `  B ) ) )
119, 10anbi12d 473 . . . . . 6  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) )  <->  ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) ) )
1211cbvexdva 1941 . . . . 5  |-  ( y  =  u  ->  ( E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) )  <->  E. v ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) ) )
1312cbvrabv 2759 . . . 4  |-  { y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) }  =  {
u  e.  Q.  |  E. v ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) }
148, 13opeq12i 3809 . . 3  |-  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  =  <. { u  e.  Q.  |  E. v ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) } ,  {
u  e.  Q.  |  E. v ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) } >.
1514ltexprlempr 7668 . 2  |-  ( A 
<P  B  ->  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  e.  P. )
1614ltexprlemfl 7669 . . . 4  |-  ( A 
<P  B  ->  ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  C_  ( 1st `  B ) )
1714ltexprlemrl 7670 . . . 4  |-  ( A 
<P  B  ->  ( 1st `  B )  C_  ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
) )
1816, 17eqssd 3196 . . 3  |-  ( A 
<P  B  ->  ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 1st `  B ) )
1914ltexprlemfu 7671 . . . 4  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  C_  ( 2nd `  B ) )
2014ltexprlemru 7672 . . . 4  |-  ( A 
<P  B  ->  ( 2nd `  B )  C_  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
) )
2119, 20eqssd 3196 . . 3  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 2nd `  B ) )
22 ltrelpr 7565 . . . . . . 7  |-  <P  C_  ( P.  X.  P. )
2322brel 4711 . . . . . 6  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
2423simpld 112 . . . . 5  |-  ( A 
<P  B  ->  A  e. 
P. )
25 addclpr 7597 . . . . 5  |-  ( ( A  e.  P.  /\  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  e.  P. )  ->  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  e.  P. )
2624, 15, 25syl2anc 411 . . . 4  |-  ( A 
<P  B  ->  ( A  +P.  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  e.  P. )
2723simprd 114 . . . 4  |-  ( A 
<P  B  ->  B  e. 
P. )
28 preqlu 7532 . . . 4  |-  ( ( ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  e.  P.  /\  B  e. 
P. )  ->  (
( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B  <->  ( ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 1st `  B )  /\  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 2nd `  B ) ) ) )
2926, 27, 28syl2anc 411 . . 3  |-  ( A 
<P  B  ->  ( ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B  <->  ( ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 1st `  B )  /\  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 2nd `  B ) ) ) )
3018, 21, 29mpbir2and 946 . 2  |-  ( A 
<P  B  ->  ( A  +P.  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B )
31 oveq2 5926 . . . 4  |-  ( x  =  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  ->  ( A  +P.  x )  =  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)
3231eqeq1d 2202 . . 3  |-  ( x  =  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  ->  (
( A  +P.  x
)  =  B  <->  ( A  +P.  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B ) )
3332rspcev 2864 . 2  |-  ( (
<. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  e.  P.  /\  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B )  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
3415, 30, 33syl2anc 411 1  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   E.wrex 2473   {crab 2476   <.cop 3621   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   1stc1st 6191   2ndc2nd 6192   Q.cnq 7340    +Q cplq 7342   P.cnp 7351    +P. cpp 7353    <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iplp 7528  df-iltp 7530
This theorem is referenced by:  lteupri  7677  ltaprlem  7678  ltaprg  7679  ltmprr  7702  recexgt0sr  7833  mulgt0sr  7838  map2psrprg  7865
  Copyright terms: Public domain W3C validator