ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexpri Unicode version

Theorem ltexpri 7626
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
Assertion
Ref Expression
ltexpri  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltexpri
Dummy variables  y  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . 8  |-  ( ( y  =  u  /\  z  =  v )  ->  z  =  v )
21eleq1d 2256 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( z  e.  ( 2nd `  A )  <-> 
v  e.  ( 2nd `  A ) ) )
3 simpl 109 . . . . . . . . 9  |-  ( ( y  =  u  /\  z  =  v )  ->  y  =  u )
41, 3oveq12d 5906 . . . . . . . 8  |-  ( ( y  =  u  /\  z  =  v )  ->  ( z  +Q  y
)  =  ( v  +Q  u ) )
54eleq1d 2256 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  +Q  y )  e.  ( 1st `  B )  <-> 
( v  +Q  u
)  e.  ( 1st `  B ) ) )
62, 5anbi12d 473 . . . . . 6  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) )  <->  ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) ) )
76cbvexdva 1939 . . . . 5  |-  ( y  =  u  ->  ( E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) )  <->  E. v ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) ) )
87cbvrabv 2748 . . . 4  |-  { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) }  =  {
u  e.  Q.  |  E. v ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) }
91eleq1d 2256 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( z  e.  ( 1st `  A )  <-> 
v  e.  ( 1st `  A ) ) )
104eleq1d 2256 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  +Q  y )  e.  ( 2nd `  B )  <-> 
( v  +Q  u
)  e.  ( 2nd `  B ) ) )
119, 10anbi12d 473 . . . . . 6  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) )  <->  ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) ) )
1211cbvexdva 1939 . . . . 5  |-  ( y  =  u  ->  ( E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) )  <->  E. v ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) ) )
1312cbvrabv 2748 . . . 4  |-  { y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) }  =  {
u  e.  Q.  |  E. v ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) }
148, 13opeq12i 3795 . . 3  |-  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  =  <. { u  e.  Q.  |  E. v ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) } ,  {
u  e.  Q.  |  E. v ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) } >.
1514ltexprlempr 7621 . 2  |-  ( A 
<P  B  ->  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  e.  P. )
1614ltexprlemfl 7622 . . . 4  |-  ( A 
<P  B  ->  ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  C_  ( 1st `  B ) )
1714ltexprlemrl 7623 . . . 4  |-  ( A 
<P  B  ->  ( 1st `  B )  C_  ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
) )
1816, 17eqssd 3184 . . 3  |-  ( A 
<P  B  ->  ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 1st `  B ) )
1914ltexprlemfu 7624 . . . 4  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  C_  ( 2nd `  B ) )
2014ltexprlemru 7625 . . . 4  |-  ( A 
<P  B  ->  ( 2nd `  B )  C_  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
) )
2119, 20eqssd 3184 . . 3  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 2nd `  B ) )
22 ltrelpr 7518 . . . . . . 7  |-  <P  C_  ( P.  X.  P. )
2322brel 4690 . . . . . 6  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
2423simpld 112 . . . . 5  |-  ( A 
<P  B  ->  A  e. 
P. )
25 addclpr 7550 . . . . 5  |-  ( ( A  e.  P.  /\  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  e.  P. )  ->  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  e.  P. )
2624, 15, 25syl2anc 411 . . . 4  |-  ( A 
<P  B  ->  ( A  +P.  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  e.  P. )
2723simprd 114 . . . 4  |-  ( A 
<P  B  ->  B  e. 
P. )
28 preqlu 7485 . . . 4  |-  ( ( ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  e.  P.  /\  B  e. 
P. )  ->  (
( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B  <->  ( ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 1st `  B )  /\  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 2nd `  B ) ) ) )
2926, 27, 28syl2anc 411 . . 3  |-  ( A 
<P  B  ->  ( ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B  <->  ( ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 1st `  B )  /\  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 2nd `  B ) ) ) )
3018, 21, 29mpbir2and 945 . 2  |-  ( A 
<P  B  ->  ( A  +P.  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B )
31 oveq2 5896 . . . 4  |-  ( x  =  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  ->  ( A  +P.  x )  =  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)
3231eqeq1d 2196 . . 3  |-  ( x  =  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  ->  (
( A  +P.  x
)  =  B  <->  ( A  +P.  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B ) )
3332rspcev 2853 . 2  |-  ( (
<. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  e.  P.  /\  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B )  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
3415, 30, 33syl2anc 411 1  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363   E.wex 1502    e. wcel 2158   E.wrex 2466   {crab 2469   <.cop 3607   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   1stc1st 6153   2ndc2nd 6154   Q.cnq 7293    +Q cplq 7295   P.cnp 7304    +P. cpp 7306    <P cltp 7308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-eprel 4301  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-1o 6431  df-2o 6432  df-oadd 6435  df-omul 6436  df-er 6549  df-ec 6551  df-qs 6555  df-ni 7317  df-pli 7318  df-mi 7319  df-lti 7320  df-plpq 7357  df-mpq 7358  df-enq 7360  df-nqqs 7361  df-plqqs 7362  df-mqqs 7363  df-1nqqs 7364  df-rq 7365  df-ltnqqs 7366  df-enq0 7437  df-nq0 7438  df-0nq0 7439  df-plq0 7440  df-mq0 7441  df-inp 7479  df-iplp 7481  df-iltp 7483
This theorem is referenced by:  lteupri  7630  ltaprlem  7631  ltaprg  7632  ltmprr  7655  recexgt0sr  7786  mulgt0sr  7791  map2psrprg  7818
  Copyright terms: Public domain W3C validator