ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexpri Unicode version

Theorem ltexpri 7761
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
Assertion
Ref Expression
ltexpri  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltexpri
Dummy variables  y  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . 8  |-  ( ( y  =  u  /\  z  =  v )  ->  z  =  v )
21eleq1d 2276 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( z  e.  ( 2nd `  A )  <-> 
v  e.  ( 2nd `  A ) ) )
3 simpl 109 . . . . . . . . 9  |-  ( ( y  =  u  /\  z  =  v )  ->  y  =  u )
41, 3oveq12d 5985 . . . . . . . 8  |-  ( ( y  =  u  /\  z  =  v )  ->  ( z  +Q  y
)  =  ( v  +Q  u ) )
54eleq1d 2276 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  +Q  y )  e.  ( 1st `  B )  <-> 
( v  +Q  u
)  e.  ( 1st `  B ) ) )
62, 5anbi12d 473 . . . . . 6  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) )  <->  ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) ) )
76cbvexdva 1954 . . . . 5  |-  ( y  =  u  ->  ( E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) )  <->  E. v ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) ) )
87cbvrabv 2775 . . . 4  |-  { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) }  =  {
u  e.  Q.  |  E. v ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) }
91eleq1d 2276 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( z  e.  ( 1st `  A )  <-> 
v  e.  ( 1st `  A ) ) )
104eleq1d 2276 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  +Q  y )  e.  ( 2nd `  B )  <-> 
( v  +Q  u
)  e.  ( 2nd `  B ) ) )
119, 10anbi12d 473 . . . . . 6  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) )  <->  ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) ) )
1211cbvexdva 1954 . . . . 5  |-  ( y  =  u  ->  ( E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) )  <->  E. v ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) ) )
1312cbvrabv 2775 . . . 4  |-  { y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) }  =  {
u  e.  Q.  |  E. v ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) }
148, 13opeq12i 3838 . . 3  |-  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  =  <. { u  e.  Q.  |  E. v ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) } ,  {
u  e.  Q.  |  E. v ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) } >.
1514ltexprlempr 7756 . 2  |-  ( A 
<P  B  ->  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  e.  P. )
1614ltexprlemfl 7757 . . . 4  |-  ( A 
<P  B  ->  ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  C_  ( 1st `  B ) )
1714ltexprlemrl 7758 . . . 4  |-  ( A 
<P  B  ->  ( 1st `  B )  C_  ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
) )
1816, 17eqssd 3218 . . 3  |-  ( A 
<P  B  ->  ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 1st `  B ) )
1914ltexprlemfu 7759 . . . 4  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  C_  ( 2nd `  B ) )
2014ltexprlemru 7760 . . . 4  |-  ( A 
<P  B  ->  ( 2nd `  B )  C_  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
) )
2119, 20eqssd 3218 . . 3  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 2nd `  B ) )
22 ltrelpr 7653 . . . . . . 7  |-  <P  C_  ( P.  X.  P. )
2322brel 4745 . . . . . 6  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
2423simpld 112 . . . . 5  |-  ( A 
<P  B  ->  A  e. 
P. )
25 addclpr 7685 . . . . 5  |-  ( ( A  e.  P.  /\  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  e.  P. )  ->  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  e.  P. )
2624, 15, 25syl2anc 411 . . . 4  |-  ( A 
<P  B  ->  ( A  +P.  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  e.  P. )
2723simprd 114 . . . 4  |-  ( A 
<P  B  ->  B  e. 
P. )
28 preqlu 7620 . . . 4  |-  ( ( ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  e.  P.  /\  B  e. 
P. )  ->  (
( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B  <->  ( ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 1st `  B )  /\  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 2nd `  B ) ) ) )
2926, 27, 28syl2anc 411 . . 3  |-  ( A 
<P  B  ->  ( ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B  <->  ( ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 1st `  B )  /\  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 2nd `  B ) ) ) )
3018, 21, 29mpbir2and 947 . 2  |-  ( A 
<P  B  ->  ( A  +P.  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B )
31 oveq2 5975 . . . 4  |-  ( x  =  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  ->  ( A  +P.  x )  =  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)
3231eqeq1d 2216 . . 3  |-  ( x  =  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  ->  (
( A  +P.  x
)  =  B  <->  ( A  +P.  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B ) )
3332rspcev 2884 . 2  |-  ( (
<. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  e.  P.  /\  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B )  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
3415, 30, 33syl2anc 411 1  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   E.wrex 2487   {crab 2490   <.cop 3646   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   1stc1st 6247   2ndc2nd 6248   Q.cnq 7428    +Q cplq 7430   P.cnp 7439    +P. cpp 7441    <P cltp 7443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-iplp 7616  df-iltp 7618
This theorem is referenced by:  lteupri  7765  ltaprlem  7766  ltaprg  7767  ltmprr  7790  recexgt0sr  7921  mulgt0sr  7926  map2psrprg  7953
  Copyright terms: Public domain W3C validator