ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexpri Unicode version

Theorem ltexpri 7697
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
Assertion
Ref Expression
ltexpri  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltexpri
Dummy variables  y  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . 8  |-  ( ( y  =  u  /\  z  =  v )  ->  z  =  v )
21eleq1d 2265 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( z  e.  ( 2nd `  A )  <-> 
v  e.  ( 2nd `  A ) ) )
3 simpl 109 . . . . . . . . 9  |-  ( ( y  =  u  /\  z  =  v )  ->  y  =  u )
41, 3oveq12d 5943 . . . . . . . 8  |-  ( ( y  =  u  /\  z  =  v )  ->  ( z  +Q  y
)  =  ( v  +Q  u ) )
54eleq1d 2265 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  +Q  y )  e.  ( 1st `  B )  <-> 
( v  +Q  u
)  e.  ( 1st `  B ) ) )
62, 5anbi12d 473 . . . . . 6  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) )  <->  ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) ) )
76cbvexdva 1944 . . . . 5  |-  ( y  =  u  ->  ( E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) )  <->  E. v ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) ) )
87cbvrabv 2762 . . . 4  |-  { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) }  =  {
u  e.  Q.  |  E. v ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) }
91eleq1d 2265 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( z  e.  ( 1st `  A )  <-> 
v  e.  ( 1st `  A ) ) )
104eleq1d 2265 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  +Q  y )  e.  ( 2nd `  B )  <-> 
( v  +Q  u
)  e.  ( 2nd `  B ) ) )
119, 10anbi12d 473 . . . . . 6  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) )  <->  ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) ) )
1211cbvexdva 1944 . . . . 5  |-  ( y  =  u  ->  ( E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) )  <->  E. v ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) ) )
1312cbvrabv 2762 . . . 4  |-  { y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) }  =  {
u  e.  Q.  |  E. v ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) }
148, 13opeq12i 3814 . . 3  |-  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  =  <. { u  e.  Q.  |  E. v ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) } ,  {
u  e.  Q.  |  E. v ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) } >.
1514ltexprlempr 7692 . 2  |-  ( A 
<P  B  ->  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  e.  P. )
1614ltexprlemfl 7693 . . . 4  |-  ( A 
<P  B  ->  ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  C_  ( 1st `  B ) )
1714ltexprlemrl 7694 . . . 4  |-  ( A 
<P  B  ->  ( 1st `  B )  C_  ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
) )
1816, 17eqssd 3201 . . 3  |-  ( A 
<P  B  ->  ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 1st `  B ) )
1914ltexprlemfu 7695 . . . 4  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  C_  ( 2nd `  B ) )
2014ltexprlemru 7696 . . . 4  |-  ( A 
<P  B  ->  ( 2nd `  B )  C_  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
) )
2119, 20eqssd 3201 . . 3  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 2nd `  B ) )
22 ltrelpr 7589 . . . . . . 7  |-  <P  C_  ( P.  X.  P. )
2322brel 4716 . . . . . 6  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
2423simpld 112 . . . . 5  |-  ( A 
<P  B  ->  A  e. 
P. )
25 addclpr 7621 . . . . 5  |-  ( ( A  e.  P.  /\  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  e.  P. )  ->  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  e.  P. )
2624, 15, 25syl2anc 411 . . . 4  |-  ( A 
<P  B  ->  ( A  +P.  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  e.  P. )
2723simprd 114 . . . 4  |-  ( A 
<P  B  ->  B  e. 
P. )
28 preqlu 7556 . . . 4  |-  ( ( ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  e.  P.  /\  B  e. 
P. )  ->  (
( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B  <->  ( ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 1st `  B )  /\  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 2nd `  B ) ) ) )
2926, 27, 28syl2anc 411 . . 3  |-  ( A 
<P  B  ->  ( ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B  <->  ( ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 1st `  B )  /\  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 2nd `  B ) ) ) )
3018, 21, 29mpbir2and 946 . 2  |-  ( A 
<P  B  ->  ( A  +P.  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B )
31 oveq2 5933 . . . 4  |-  ( x  =  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  ->  ( A  +P.  x )  =  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)
3231eqeq1d 2205 . . 3  |-  ( x  =  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  ->  (
( A  +P.  x
)  =  B  <->  ( A  +P.  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B ) )
3332rspcev 2868 . 2  |-  ( (
<. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  e.  P.  /\  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B )  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
3415, 30, 33syl2anc 411 1  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   E.wrex 2476   {crab 2479   <.cop 3626   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   1stc1st 6205   2ndc2nd 6206   Q.cnq 7364    +Q cplq 7366   P.cnp 7375    +P. cpp 7377    <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-iplp 7552  df-iltp 7554
This theorem is referenced by:  lteupri  7701  ltaprlem  7702  ltaprg  7703  ltmprr  7726  recexgt0sr  7857  mulgt0sr  7862  map2psrprg  7889
  Copyright terms: Public domain W3C validator