ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexpri Unicode version

Theorem ltexpri 7603
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
Assertion
Ref Expression
ltexpri  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltexpri
Dummy variables  y  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . 8  |-  ( ( y  =  u  /\  z  =  v )  ->  z  =  v )
21eleq1d 2246 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( z  e.  ( 2nd `  A )  <-> 
v  e.  ( 2nd `  A ) ) )
3 simpl 109 . . . . . . . . 9  |-  ( ( y  =  u  /\  z  =  v )  ->  y  =  u )
41, 3oveq12d 5887 . . . . . . . 8  |-  ( ( y  =  u  /\  z  =  v )  ->  ( z  +Q  y
)  =  ( v  +Q  u ) )
54eleq1d 2246 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  +Q  y )  e.  ( 1st `  B )  <-> 
( v  +Q  u
)  e.  ( 1st `  B ) ) )
62, 5anbi12d 473 . . . . . 6  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) )  <->  ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) ) )
76cbvexdva 1929 . . . . 5  |-  ( y  =  u  ->  ( E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) )  <->  E. v ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) ) )
87cbvrabv 2736 . . . 4  |-  { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) }  =  {
u  e.  Q.  |  E. v ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) }
91eleq1d 2246 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( z  e.  ( 1st `  A )  <-> 
v  e.  ( 1st `  A ) ) )
104eleq1d 2246 . . . . . . 7  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  +Q  y )  e.  ( 2nd `  B )  <-> 
( v  +Q  u
)  e.  ( 2nd `  B ) ) )
119, 10anbi12d 473 . . . . . 6  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) )  <->  ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) ) )
1211cbvexdva 1929 . . . . 5  |-  ( y  =  u  ->  ( E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) )  <->  E. v ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) ) )
1312cbvrabv 2736 . . . 4  |-  { y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) }  =  {
u  e.  Q.  |  E. v ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) }
148, 13opeq12i 3781 . . 3  |-  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  =  <. { u  e.  Q.  |  E. v ( v  e.  ( 2nd `  A
)  /\  ( v  +Q  u )  e.  ( 1st `  B ) ) } ,  {
u  e.  Q.  |  E. v ( v  e.  ( 1st `  A
)  /\  ( v  +Q  u )  e.  ( 2nd `  B ) ) } >.
1514ltexprlempr 7598 . 2  |-  ( A 
<P  B  ->  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  e.  P. )
1614ltexprlemfl 7599 . . . 4  |-  ( A 
<P  B  ->  ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  C_  ( 1st `  B ) )
1714ltexprlemrl 7600 . . . 4  |-  ( A 
<P  B  ->  ( 1st `  B )  C_  ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
) )
1816, 17eqssd 3172 . . 3  |-  ( A 
<P  B  ->  ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 1st `  B ) )
1914ltexprlemfu 7601 . . . 4  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  C_  ( 2nd `  B ) )
2014ltexprlemru 7602 . . . 4  |-  ( A 
<P  B  ->  ( 2nd `  B )  C_  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
) )
2119, 20eqssd 3172 . . 3  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 2nd `  B ) )
22 ltrelpr 7495 . . . . . . 7  |-  <P  C_  ( P.  X.  P. )
2322brel 4675 . . . . . 6  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
2423simpld 112 . . . . 5  |-  ( A 
<P  B  ->  A  e. 
P. )
25 addclpr 7527 . . . . 5  |-  ( ( A  e.  P.  /\  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  e.  P. )  ->  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  e.  P. )
2624, 15, 25syl2anc 411 . . . 4  |-  ( A 
<P  B  ->  ( A  +P.  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  e.  P. )
2723simprd 114 . . . 4  |-  ( A 
<P  B  ->  B  e. 
P. )
28 preqlu 7462 . . . 4  |-  ( ( ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  e.  P.  /\  B  e. 
P. )  ->  (
( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B  <->  ( ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 1st `  B )  /\  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 2nd `  B ) ) ) )
2926, 27, 28syl2anc 411 . . 3  |-  ( A 
<P  B  ->  ( ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B  <->  ( ( 1st `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 1st `  B )  /\  ( 2nd `  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)  =  ( 2nd `  B ) ) ) )
3018, 21, 29mpbir2and 944 . 2  |-  ( A 
<P  B  ->  ( A  +P.  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B )
31 oveq2 5877 . . . 4  |-  ( x  =  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  ->  ( A  +P.  x )  =  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )
)
3231eqeq1d 2186 . . 3  |-  ( x  =  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  ->  (
( A  +P.  x
)  =  B  <->  ( A  +P.  <. { y  e. 
Q.  |  E. z
( z  e.  ( 2nd `  A )  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B ) )
3332rspcev 2841 . 2  |-  ( (
<. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >.  e.  P.  /\  ( A  +P.  <. { y  e.  Q.  |  E. z ( z  e.  ( 2nd `  A
)  /\  ( z  +Q  y )  e.  ( 1st `  B ) ) } ,  {
y  e.  Q.  |  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  y )  e.  ( 2nd `  B ) ) } >. )  =  B )  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
3415, 30, 33syl2anc 411 1  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   E.wrex 2456   {crab 2459   <.cop 3594   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   1stc1st 6133   2ndc2nd 6134   Q.cnq 7270    +Q cplq 7272   P.cnp 7281    +P. cpp 7283    <P cltp 7285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-1nqqs 7341  df-rq 7342  df-ltnqqs 7343  df-enq0 7414  df-nq0 7415  df-0nq0 7416  df-plq0 7417  df-mq0 7418  df-inp 7456  df-iplp 7458  df-iltp 7460
This theorem is referenced by:  lteupri  7607  ltaprlem  7608  ltaprg  7609  ltmprr  7632  recexgt0sr  7763  mulgt0sr  7768  map2psrprg  7795
  Copyright terms: Public domain W3C validator