| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvexdva | GIF version | ||
| Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) | 
| Ref | Expression | 
|---|---|
| cbvaldva.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| cbvexdva | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfvd 1543 | . 2 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 3 | cbvaldva.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | ex 115 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | 
| 5 | 1, 2, 4 | cbvexd 1942 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: cbvexdvaw 1946 cbvrexdva2 2737 acexmid 5921 tfrlemi1 6390 ltexpri 7680 recexpr 7705 | 
| Copyright terms: Public domain | W3C validator |