ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexdva GIF version

Theorem cbvexdva 1929
Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
cbvaldva.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvexdva (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
Distinct variable groups:   𝜓,𝑦   𝜒,𝑥   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvexdva
StepHypRef Expression
1 nfv 1528 . 2 𝑦𝜑
2 nfvd 1529 . 2 (𝜑 → Ⅎ𝑦𝜓)
3 cbvaldva.1 . . 3 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
43ex 115 . 2 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
51, 2, 4cbvexd 1927 1 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  cbvrexdva2  2711  acexmid  5873  tfrlemi1  6332  ltexpri  7611  recexpr  7636
  Copyright terms: Public domain W3C validator