ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexh Unicode version

Theorem cbvexh 1743
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
cbvexh.1  |-  ( ph  ->  A. y ph )
cbvexh.2  |-  ( ps 
->  A. x ps )
cbvexh.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvexh  |-  ( E. x ph  <->  E. y ps )

Proof of Theorem cbvexh
StepHypRef Expression
1 cbvexh.2 . . . 4  |-  ( ps 
->  A. x ps )
21hbex 1624 . . 3  |-  ( E. y ps  ->  A. x E. y ps )
3 cbvexh.1 . . . . 5  |-  ( ph  ->  A. y ph )
4 cbvexh.3 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
54bicomd 140 . . . . . 6  |-  ( x  =  y  ->  ( ps 
<-> 
ph ) )
65equcoms 1696 . . . . 5  |-  ( y  =  x  ->  ( ps 
<-> 
ph ) )
73, 6equsex 1716 . . . 4  |-  ( E. y ( y  =  x  /\  ps )  <->  ph )
8 simpr 109 . . . . 5  |-  ( ( y  =  x  /\  ps )  ->  ps )
98eximi 1588 . . . 4  |-  ( E. y ( y  =  x  /\  ps )  ->  E. y ps )
107, 9sylbir 134 . . 3  |-  ( ph  ->  E. y ps )
112, 10exlimih 1581 . 2  |-  ( E. x ph  ->  E. y ps )
123hbex 1624 . . 3  |-  ( E. x ph  ->  A. y E. x ph )
131, 4equsex 1716 . . . 4  |-  ( E. x ( x  =  y  /\  ph )  <->  ps )
14 simpr 109 . . . . 5  |-  ( ( x  =  y  /\  ph )  ->  ph )
1514eximi 1588 . . . 4  |-  ( E. x ( x  =  y  /\  ph )  ->  E. x ph )
1613, 15sylbir 134 . . 3  |-  ( ps 
->  E. x ph )
1712, 16exlimih 1581 . 2  |-  ( E. y ps  ->  E. x ph )
1811, 17impbii 125 1  |-  ( E. x ph  <->  E. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  cbvex  1744  sb8eh  1843  cbvexv  1906  euf  2019  mopick  2092
  Copyright terms: Public domain W3C validator