ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  class2seteq Unicode version

Theorem class2seteq 4226
Description: Equality theorem for classes and sets . (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.)
Assertion
Ref Expression
class2seteq  |-  ( A  e.  V  ->  { x  e.  A  |  A  e.  _V }  =  A )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem class2seteq
StepHypRef Expression
1 elex 2791 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 ax-1 6 . . . . 5  |-  ( A  e.  _V  ->  (
x  e.  A  ->  A  e.  _V )
)
32ralrimiv 2582 . . . 4  |-  ( A  e.  _V  ->  A. x  e.  A  A  e.  _V )
4 rabid2 2688 . . . 4  |-  ( A  =  { x  e.  A  |  A  e. 
_V }  <->  A. x  e.  A  A  e.  _V )
53, 4sylibr 134 . . 3  |-  ( A  e.  _V  ->  A  =  { x  e.  A  |  A  e.  _V } )
65eqcomd 2215 . 2  |-  ( A  e.  _V  ->  { x  e.  A  |  A  e.  _V }  =  A )
71, 6syl 14 1  |-  ( A  e.  V  ->  { x  e.  A  |  A  e.  _V }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1375    e. wcel 2180   A.wral 2488   {crab 2492   _Vcvv 2779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-11 1532  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-ral 2493  df-rab 2497  df-v 2781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator