Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  class2seteq Unicode version

Theorem class2seteq 4095
 Description: Equality theorem for classes and sets . (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.)
Assertion
Ref Expression
class2seteq
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem class2seteq
StepHypRef Expression
1 elex 2700 . 2
2 ax-1 6 . . . . 5
32ralrimiv 2507 . . . 4
4 rabid2 2610 . . . 4
53, 4sylibr 133 . . 3
65eqcomd 2146 . 2
71, 6syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1332   wcel 1481  wral 2417  crab 2421  cvv 2689 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-11 1485  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-ral 2422  df-rab 2426  df-v 2691 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator