ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  class2seteq Unicode version

Theorem class2seteq 4149
Description: Equality theorem for classes and sets . (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.)
Assertion
Ref Expression
class2seteq  |-  ( A  e.  V  ->  { x  e.  A  |  A  e.  _V }  =  A )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem class2seteq
StepHypRef Expression
1 elex 2741 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 ax-1 6 . . . . 5  |-  ( A  e.  _V  ->  (
x  e.  A  ->  A  e.  _V )
)
32ralrimiv 2542 . . . 4  |-  ( A  e.  _V  ->  A. x  e.  A  A  e.  _V )
4 rabid2 2646 . . . 4  |-  ( A  =  { x  e.  A  |  A  e. 
_V }  <->  A. x  e.  A  A  e.  _V )
53, 4sylibr 133 . . 3  |-  ( A  e.  _V  ->  A  =  { x  e.  A  |  A  e.  _V } )
65eqcomd 2176 . 2  |-  ( A  e.  _V  ->  { x  e.  A  |  A  e.  _V }  =  A )
71, 6syl 14 1  |-  ( A  e.  V  ->  { x  e.  A  |  A  e.  _V }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-rab 2457  df-v 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator