ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elpw Unicode version

Theorem 0elpw 4219
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.)
Assertion
Ref Expression
0elpw  |-  (/)  e.  ~P A

Proof of Theorem 0elpw
StepHypRef Expression
1 0ss 3503 . 2  |-  (/)  C_  A
2 0ex 4182 . . 3  |-  (/)  e.  _V
32elpw 3627 . 2  |-  ( (/)  e.  ~P A  <->  (/)  C_  A
)
41, 3mpbir 146 1  |-  (/)  e.  ~P A
Colors of variables: wff set class
Syntax hints:    e. wcel 2177    C_ wss 3170   (/)c0 3464   ~Pcpw 3621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-nul 4181
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623
This theorem is referenced by:  ordpwsucexmid  4631  pw1on  7367  pw1ne0  7369  pw1nct  16112
  Copyright terms: Public domain W3C validator