ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elpw Unicode version

Theorem 0elpw 4143
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.)
Assertion
Ref Expression
0elpw  |-  (/)  e.  ~P A

Proof of Theorem 0elpw
StepHypRef Expression
1 0ss 3447 . 2  |-  (/)  C_  A
2 0ex 4109 . . 3  |-  (/)  e.  _V
32elpw 3565 . 2  |-  ( (/)  e.  ~P A  <->  (/)  C_  A
)
41, 3mpbir 145 1  |-  (/)  e.  ~P A
Colors of variables: wff set class
Syntax hints:    e. wcel 2136    C_ wss 3116   (/)c0 3409   ~Pcpw 3559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-nul 4108
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561
This theorem is referenced by:  ordpwsucexmid  4547  pw1on  7182  pw1ne0  7184  pw1nct  13883
  Copyright terms: Public domain W3C validator