ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elpw Unicode version

Theorem 0elpw 4208
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.)
Assertion
Ref Expression
0elpw  |-  (/)  e.  ~P A

Proof of Theorem 0elpw
StepHypRef Expression
1 0ss 3499 . 2  |-  (/)  C_  A
2 0ex 4171 . . 3  |-  (/)  e.  _V
32elpw 3622 . 2  |-  ( (/)  e.  ~P A  <->  (/)  C_  A
)
41, 3mpbir 146 1  |-  (/)  e.  ~P A
Colors of variables: wff set class
Syntax hints:    e. wcel 2176    C_ wss 3166   (/)c0 3460   ~Pcpw 3616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-nul 4170
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618
This theorem is referenced by:  ordpwsucexmid  4618  pw1on  7338  pw1ne0  7340  pw1nct  15940
  Copyright terms: Public domain W3C validator